scvi.model.DestVI#
- class scvi.model.DestVI(st_adata, cell_type_mapping, decoder_state_dict, px_decoder_state_dict, px_r, n_hidden, n_latent, n_layers, **module_kwargs)[source]#
Multi-resolution deconvolution of Spatial Transcriptomics data (DestVI) [Lopez21].. Most users will use the alternate constructor (see example).
- Parameters
- st_adata :
AnnData
spatial transcriptomics AnnData object that has been registered via
setup_anndata()
.- cell_type_mapping :
ndarray
mapping between numerals and cell type labels
- decoder_state_dict :
OrderedDict
state_dict from the decoder of the CondSCVI model
- px_decoder_state_dict :
OrderedDict
state_dict from the px_decoder of the CondSCVI model
- px_r :
ndarray
parameters for the px_r tensor in the CondSCVI model
- n_hidden :
int
Number of nodes per hidden layer.
- n_latent :
int
Dimensionality of the latent space.
- n_layers :
int
Number of hidden layers used for encoder and decoder NNs.
- **module_kwargs
Keyword args for
MRDeconv
- st_adata :
Examples
>>> sc_adata = anndata.read_h5ad(path_to_scRNA_anndata) >>> scvi.model.CondSCVI.setup_anndata(sc_adata) >>> sc_model = scvi.model.CondSCVI(sc_adata) >>> st_adata = anndata.read_h5ad(path_to_ST_anndata) >>> DestVI.setup_anndata(st_adata) >>> spatial_model = DestVI.from_rna_model(st_adata, sc_model) >>> spatial_model.train(max_epochs=2000) >>> st_adata.obsm["proportions"] = spatial_model.get_proportions(st_adata) >>> gamma = spatial_model.get_gamma(st_adata)
Notes
See further usage examples in the following tutorials:
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Alternate constructor for exploiting a pre-trained model on a RNA-seq dataset. |
|
Retrieves the |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Returns the estimated cell-type specific latent space for the spatial data. |
|
Returns the estimated cell type proportion for the spatial data. |
|
Return the scaled parameter of the NB for every spot in queried cell types. |
|
Instantiate a model from the saved output. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Trains the model using MAP inference. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
adata#
adata_manager#
- DestVI.adata_manager#
Manager instance associated with self.adata.
- Return type
device#
history#
- DestVI.history#
Returns computed metrics during training.
is_trained#
test_indices#
train_indices#
validation_indices#
Methods#
from_rna_model#
get_anndata_manager#
- DestVI.get_anndata_manager(adata, required=False)#
Retrieves the
AnnDataManager
for a given AnnData object specific to this model instance.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters
- Return type
get_from_registry#
- DestVI.get_from_registry(adata, registry_key)#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
get_gamma#
- DestVI.get_gamma(indices=None, batch_size=None, return_numpy=False)[source]#
Returns the estimated cell-type specific latent space for the spatial data.
- Parameters
- indices :
Sequence
[int
] |None
Optional
[Sequence
[int
]] (default:None
) Indices of cells in adata to use. Only used if amortization. If None, all cells are used.
- batch_size :
int
|None
Optional
[int
] (default:None
) Minibatch size for data loading into model. Only used if amortization. Defaults to scvi.settings.batch_size.
- return_numpy :
bool
(default:False
) if activated, will return a numpy array of shape is n_spots x n_latent x n_labels.
- indices :
- Return type
ndarray
| {str
:DataFrame
}Union
[ndarray
,Dict
[str
,DataFrame
]]
get_proportions#
- DestVI.get_proportions(keep_noise=False, indices=None, batch_size=None)[source]#
Returns the estimated cell type proportion for the spatial data.
Shape is n_cells x n_labels OR n_cells x (n_labels + 1) if keep_noise.
- Parameters
- keep_noise :
bool
(default:False
) whether to account for the noise term as a standalone cell type in the proportion estimate.
- indices :
Sequence
[int
] |None
Optional
[Sequence
[int
]] (default:None
) Indices of cells in adata to use. Only used if amortization. If None, all cells are used.
- batch_size :
int
|None
Optional
[int
] (default:None
) Minibatch size for data loading into model. Only used if amortization. Defaults to scvi.settings.batch_size.
- keep_noise :
- Return type
get_scale_for_ct#
- DestVI.get_scale_for_ct(label, indices=None, batch_size=None)[source]#
Return the scaled parameter of the NB for every spot in queried cell types.
- Parameters
- label :
str
cell type of interest
- indices :
Sequence
[int
] |None
Optional
[Sequence
[int
]] (default:None
) Indices of cells in self.adata to use. If None, all cells are used.
- batch_size :
int
|None
Optional
[int
] (default:None
) Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- label :
- Return type
- Returns
Pandas dataframe of gene_expression
load#
- classmethod DestVI.load(dir_path, adata=None, use_gpu=None, prefix=None)#
Instantiate a model from the saved output.
- Parameters
- dir_path :
str
Path to saved outputs.
- adata :
AnnData
|None
Optional
[AnnData
] (default:None
) AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.
- use_gpu :
str
|int
|bool
|None
Union
[str
,int
,bool
,None
] (default:None
) Load model on default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if str), or use CPU (if False).
- prefix :
str
|None
Optional
[str
] (default:None
) Prefix of saved file names.
- dir_path :
- Returns
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) # use the name of the model class used to save >>> model.get_....
register_manager#
- classmethod DestVI.register_manager(adata_manager)#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
save#
- DestVI.save(dir_path, prefix=None, overwrite=False, save_anndata=False, **anndata_write_kwargs)#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters
- dir_path :
str
Path to a directory.
- prefix :
str
|None
Optional
[str
] (default:None
) Prefix to prepend to saved file names.
- overwrite :
bool
(default:False
) Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.
- save_anndata :
bool
(default:False
) If True, also saves the anndata
- anndata_write_kwargs
Kwargs for
write()
- dir_path :
setup_anndata#
to_device#
- DestVI.to_device(device)#
Move model to device.
- Parameters
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device('cpu') # moves model to CPU >>> model.to_device('cuda:0') # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
train#
- DestVI.train(max_epochs=400, lr=0.005, use_gpu=None, train_size=1.0, validation_size=None, batch_size=128, n_epochs_kl_warmup=50, plan_kwargs=None, **kwargs)[source]#
Trains the model using MAP inference.
- Parameters
- max_epochs :
int
(default:400
) Number of epochs to train for
- lr :
float
(default:0.005
) Learning rate for optimization.
- use_gpu :
str
|int
|bool
|None
Union
[str
,int
,bool
,None
] (default:None
) Use default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if str, e.g., ‘cuda:0’), or use CPU (if False).
- train_size :
float
(default:1.0
) Size of training set in the range [0.0, 1.0].
- validation_size :
float
|None
Optional
[float
] (default:None
) Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.
- batch_size :
int
(default:128
) Minibatch size to use during training.
- n_epochs_kl_warmup :
int
(default:50
) number of epochs needed to reach unit kl weight in the elbo
- plan_kwargs :
dict
|None
Optional
[dict
] (default:None
) Keyword args for
TrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.- **kwargs
Other keyword args for
Trainer
.
- max_epochs :
view_anndata_setup#
- DestVI.view_anndata_setup(adata=None, hide_state_registries=False)#
Print summary of the setup for the initial AnnData or a given AnnData object.