scvi.distributions.NegativeBinomialMixture#
- class scvi.distributions.NegativeBinomialMixture(mu1, mu2, theta1, mixture_logits, theta2=None, validate_args=False)[source]#
Negative binomial mixture distribution.
See
NegativeBinomial
for further description of parameters.- Parameters
- mu1 :
Tensor
Mean of the component 1 distribution.
- mu2 :
Tensor
Mean of the component 2 distribution.
- theta1 :
Tensor
Inverse dispersion for component 1.
- mixture_logits :
Tensor
Logits scale probability of belonging to component 1.
- theta2 :
Tensor
|None
Optional
[Tensor
] (default:None
) Inverse dispersion for component 1. If None, assumed to be equal to theta1.
- validate_args :
bool
(default:False
) Raise ValueError if arguments do not match constraints
- mu1 :
Attributes table#
Returns the shape over which parameters are batched. |
|
Returns the shape of a single sample (without batching). |
|
Returns the mean of the distribution. |
|
|
|
Returns the standard deviation of the distribution. |
|
Returns the variance of the distribution. |
Methods table#
|
Returns the cumulative density/mass function evaluated at value. |
|
Returns entropy of distribution, batched over batch_shape. |
|
Returns tensor containing all values supported by a discrete distribution. |
|
Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. |
|
Returns the inverse cumulative density/mass function evaluated at value. |
|
Returns the log of the probability density/mass function evaluated at value. |
Returns perplexity of distribution, batched over batch_shape. |
|
|
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. |
|
Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. |
|
Generates n samples or n batches of samples if the distribution parameters are batched. |
|
Sets whether validation is enabled or disabled. |
Attributes#
arg_constraints#
- NegativeBinomialMixture.arg_constraints = {'mixture_logits': Real(), 'mixture_probs': HalfOpenInterval(lower_bound=0.0, upper_bound=1.0), 'mu1': GreaterThanEq(lower_bound=0), 'mu2': GreaterThanEq(lower_bound=0), 'theta1': GreaterThanEq(lower_bound=0)}#
batch_shape#
- NegativeBinomialMixture.batch_shape#
Returns the shape over which parameters are batched.
event_shape#
- NegativeBinomialMixture.event_shape#
Returns the shape of a single sample (without batching).
has_enumerate_support#
- NegativeBinomialMixture.has_enumerate_support = False#
has_rsample#
- NegativeBinomialMixture.has_rsample = False#
mean#
- NegativeBinomialMixture.mean#
mixture_probs#
stddev#
- NegativeBinomialMixture.stddev#
Returns the standard deviation of the distribution.
support#
- NegativeBinomialMixture.support = IntegerGreaterThan(lower_bound=0)#
variance#
- NegativeBinomialMixture.variance#
Returns the variance of the distribution.
Methods#
cdf#
- NegativeBinomialMixture.cdf(value)#
Returns the cumulative density/mass function evaluated at value.
- Parameters
- value : Tensor
entropy#
- NegativeBinomialMixture.entropy()#
Returns entropy of distribution, batched over batch_shape.
- Returns
Tensor of shape batch_shape.
enumerate_support#
- NegativeBinomialMixture.enumerate_support(expand=True)#
Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be (cardinality,) + batch_shape + event_shape (where event_shape = () for univariate distributions).
Note that this enumerates over all batched tensors in lock-step [[0, 0], [1, 1], …]. With expand=False, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, [[0], [1], ...
To iterate over the full Cartesian product use itertools.product(m.enumerate_support()).
- Parameters
- expand : bool
whether to expand the support over the batch dims to match the distribution’s batch_shape.
- Returns
Tensor iterating over dimension 0.
expand#
- NegativeBinomialMixture.expand(batch_shape, _instance=None)#
Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. This method calls
expand
on the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in __init__.py, when an instance is first created.- Parameters
- batch_shape : torch.Size
the desired expanded size.
- _instance
new instance provided by subclasses that need to override .expand.
- Returns
New distribution instance with batch dimensions expanded to batch_size.
icdf#
- NegativeBinomialMixture.icdf(value)#
Returns the inverse cumulative density/mass function evaluated at value.
- Parameters
- value : Tensor
log_prob#
perplexity#
- NegativeBinomialMixture.perplexity()#
Returns perplexity of distribution, batched over batch_shape.
- Returns
Tensor of shape batch_shape.
rsample#
- NegativeBinomialMixture.rsample(sample_shape=torch.Size([]))#
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched.
sample#
sample_n#
- NegativeBinomialMixture.sample_n(n)#
Generates n samples or n batches of samples if the distribution parameters are batched.
set_default_validate_args#
- static NegativeBinomialMixture.set_default_validate_args(value)#
Sets whether validation is enabled or disabled.
The default behavior mimics Python’s
assert
statement: validation is on by default, but is disabled if Python is run in optimized mode (viapython -O
). Validation may be expensive, so you may want to disable it once a model is working.- Parameters
- value : bool
Whether to enable validation.