scvi.model.AmortizedLDA#
- class scvi.model.AmortizedLDA(adata, n_topics=20, n_hidden=128, cell_topic_prior=None, topic_feature_prior=None)[source]#
Amortized Latent Dirichlet Allocation [Blei03].
- Parameters
- adata :
AnnData
AnnData object that has been registered via
setup_anndata()
.- n_topics :
int
(default:20
) Number of topics to model.
- n_hidden :
int
(default:128
) Number of nodes in the hidden layer of the encoder.
- cell_topic_prior :
float
|Sequence
[float
] |None
Union
[float
,Sequence
[float
],None
] (default:None
) Prior of cell topic distribution. If None, defaults to 1 / n_topics.
- topic_feature_prior :
float
|Sequence
[float
] |None
Union
[float
,Sequence
[float
],None
] (default:None
) Prior of topic feature distribution. If None, defaults to 1 / n_topics.
- adata :
Examples
>>> adata = anndata.read_h5ad(path_to_anndata) >>> scvi.model.AmortizedLDA.setup_anndata(adata) >>> model = scvi.model.AmortizedLDA(adata) >>> model.train() >>> feature_by_topic = model.get_feature_by_topic() >>> adata.obsm["X_LDA"] = model.get_latent_representation()
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Retrieves the |
|
Return the ELBO for the data. |
|
Gets a Monte-Carlo estimate of the expectation of the feature by topic matrix. |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Converts a count matrix to an inferred topic distribution. |
|
Computes approximate perplexity for adata. |
|
Instantiate a model from the saved output. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Train the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
adata#
adata_manager#
- AmortizedLDA.adata_manager#
Manager instance associated with self.adata.
- Return type
device#
history#
- AmortizedLDA.history#
Returns computed metrics during training.
is_trained#
test_indices#
train_indices#
validation_indices#
Methods#
get_anndata_manager#
- AmortizedLDA.get_anndata_manager(adata, required=False)#
Retrieves the
AnnDataManager
for a given AnnData object specific to this model instance.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters
- Return type
get_elbo#
- AmortizedLDA.get_elbo(adata=None, indices=None, batch_size=None)[source]#
Return the ELBO for the data.
The ELBO is a lower bound on the log likelihood of the data used for optimization of VAEs. Note, this is not the negative ELBO, higher is better.
- Parameters
- adata :
AnnData
|None
Optional
[AnnData
] (default:None
) AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.
- indices :
Sequence
[int
] |None
Optional
[Sequence
[int
]] (default:None
) Indices of cells in adata to use. If None, all cells are used.
- batch_size :
int
|None
Optional
[int
] (default:None
) Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- adata :
- Return type
- Returns
The positive ELBO.
get_feature_by_topic#
- AmortizedLDA.get_feature_by_topic(n_samples=5000)[source]#
Gets a Monte-Carlo estimate of the expectation of the feature by topic matrix.
- Parameters
- adata
AnnData to transform. If None, returns the feature by topic matrix for the source AnnData.
- n_samples
Number of samples to take for the Monte-Carlo estimate of the mean.
- Return type
- Returns
A n_var x n_topics Pandas DataFrame containing the feature by topic matrix.
get_from_registry#
- AmortizedLDA.get_from_registry(adata, registry_key)#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
get_latent_representation#
- AmortizedLDA.get_latent_representation(adata=None, indices=None, batch_size=None, n_samples=5000)[source]#
Converts a count matrix to an inferred topic distribution.
- Parameters
- adata :
AnnData
|None
Optional
[AnnData
] (default:None
) AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.
- indices :
Sequence
[int
] |None
Optional
[Sequence
[int
]] (default:None
) Indices of cells in adata to use. If None, all cells are used.
- batch_size :
int
|None
Optional
[int
] (default:None
) Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- n_samples :
int
(default:5000
) Number of samples to take for the Monte-Carlo estimate of the mean.
- adata :
- Return type
- Returns
A n_obs x n_topics Pandas DataFrame containing the normalized estimate of the topic distribution for each observation.
get_perplexity#
- AmortizedLDA.get_perplexity(adata=None, indices=None, batch_size=None)[source]#
Computes approximate perplexity for adata.
Perplexity is defined as exp(-1 * log-likelihood per count).
- Parameters
- adata :
AnnData
|None
Optional
[AnnData
] (default:None
) AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.
- indices :
Sequence
[int
] |None
Optional
[Sequence
[int
]] (default:None
) Indices of cells in adata to use. If None, all cells are used.
- batch_size :
int
|None
Optional
[int
] (default:None
) Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- adata :
- Return type
- Returns
Perplexity.
load#
- classmethod AmortizedLDA.load(dir_path, adata=None, use_gpu=None, prefix=None)#
Instantiate a model from the saved output.
- Parameters
- dir_path :
str
Path to saved outputs.
- adata :
AnnData
|None
Optional
[AnnData
] (default:None
) AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.
- use_gpu :
str
|int
|bool
|None
Union
[str
,int
,bool
,None
] (default:None
) Load model on default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if str), or use CPU (if False).
- prefix :
str
|None
Optional
[str
] (default:None
) Prefix of saved file names.
- dir_path :
- Returns
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) # use the name of the model class used to save >>> model.get_....
register_manager#
- classmethod AmortizedLDA.register_manager(adata_manager)#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
save#
- AmortizedLDA.save(dir_path, prefix=None, overwrite=False, save_anndata=False, **anndata_write_kwargs)#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters
- dir_path :
str
Path to a directory.
- prefix :
str
|None
Optional
[str
] (default:None
) Prefix to prepend to saved file names.
- overwrite :
bool
(default:False
) Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.
- save_anndata :
bool
(default:False
) If True, also saves the anndata
- anndata_write_kwargs
Kwargs for
write()
- dir_path :
setup_anndata#
to_device#
- AmortizedLDA.to_device(device)#
Move model to device.
- Parameters
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device('cpu') # moves model to CPU >>> model.to_device('cuda:0') # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
train#
- AmortizedLDA.train(max_epochs=None, use_gpu=None, train_size=0.9, validation_size=None, batch_size=128, early_stopping=False, lr=None, plan_kwargs=None, **trainer_kwargs)#
Train the model.
- Parameters
- max_epochs :
int
|None
Optional
[int
] (default:None
) Number of passes through the dataset. If None, defaults to np.min([round((20000 / n_cells) * 400), 400])
- use_gpu :
str
|int
|bool
|None
Union
[str
,int
,bool
,None
] (default:None
) Use default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if str, e.g., ‘cuda:0’), or use CPU (if False).
- train_size :
float
(default:0.9
) Size of training set in the range [0.0, 1.0].
- validation_size :
float
|None
Optional
[float
] (default:None
) Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.
- batch_size :
int
(default:128
) Minibatch size to use during training. If None, no minibatching occurs and all data is copied to device (e.g., GPU).
- early_stopping :
bool
(default:False
) Perform early stopping. Additional arguments can be passed in **kwargs. See
Trainer
for further options.- lr :
float
|None
Optional
[float
] (default:None
) Optimiser learning rate (default optimiser is
ClippedAdam
). Specifying optimiser via plan_kwargs overrides this choice of lr.- plan_kwargs :
dict
|None
Optional
[dict
] (default:None
) Keyword args for
TrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.- **trainer_kwargs
Other keyword args for
Trainer
.
- max_epochs :
view_anndata_setup#
- AmortizedLDA.view_anndata_setup(adata=None, hide_state_registries=False)#
Print summary of the setup for the initial AnnData or a given AnnData object.