scvi.dataloaders.ConcatDataLoader#
- class scvi.dataloaders.ConcatDataLoader(adata_manager, indices_list, shuffle=False, batch_size=128, data_and_attributes=None, drop_last=False, **data_loader_kwargs)[source]#
DataLoader that supports a list of list of indices to load.
- Parameters
- adata_manager :
AnnDataManager
AnnDataManager
object that has been created viasetup_anndata
.- indices_list :
List
[List
[int
]] List where each element is a list of indices in the adata to load
- shuffle :
bool
(default:False
) Whether the data should be shuffled
- batch_size : Optional[int]
minibatch size to load each iteration
- data_and_attributes :
dict
|None
Optional
[dict
] (default:None
) Dictionary with keys representing keys in data registry (
adata_manager.data_registry
) and value equal to desired numpy loading type (later made into torch tensor). IfNone
, defaults to all registered data.- data_loader_kwargs
Keyword arguments for
DataLoader
- adata_manager :
Attributes table#
Methods table#
Attributes#
multiprocessing_context#
- ConcatDataLoader.multiprocessing_context#
dataset#
- ConcatDataLoader.dataset: torch.utils.data.dataset.Dataset[torch.utils.data.dataloader.T_co]#
batch_size#
num_workers#
pin_memory#
drop_last#
timeout#
sampler#
- ConcatDataLoader.sampler: Union[torch.utils.data.sampler.Sampler, Iterable]#
prefetch_factor#
Methods#
check_worker_number_rationality#
- ConcatDataLoader.check_worker_number_rationality()#