scvi.dataloaders.SemiSupervisedDataLoader#
- class scvi.dataloaders.SemiSupervisedDataLoader(adata_manager, unlabeled_category, n_samples_per_label=None, indices=None, shuffle=False, batch_size=128, data_and_attributes=None, drop_last=False, **data_loader_kwargs)[source]#
DataLoader that supports semisupervised training.
- Parameters
- adata_manager :
AnnDataManager
AnnDataManager
object that has been created viasetup_anndata
.- unlabeled_category :
str
Category to treat as unlabeled
- n_samples_per_label :
int
|None
Optional
[int
] (default:None
) Number of subsamples for each label class to sample per epoch. By default, there is no label subsampling.
- indices :
List
[int
] |None
Optional
[List
[int
]] (default:None
) The indices of the observations in the adata to load
- shuffle :
bool
(default:False
) Whether the data should be shuffled
- batch_size : Optional[int]
minibatch size to load each iteration
- data_and_attributes :
dict
|None
Optional
[dict
] (default:None
) Dictionary with keys representing keys in data registry (adata_manager.data_registry) and value equal to desired numpy loading type (later made into torch tensor). If None, defaults to all registered data.
- data_loader_kwargs
Keyword arguments for
DataLoader
- adata_manager :
Attributes table#
Methods table#
Resamples the labeled data. |
|
Subsamples each label class by taking up to n_samples_per_label samples per class. |
Attributes#
multiprocessing_context#
- SemiSupervisedDataLoader.multiprocessing_context#
dataset#
- SemiSupervisedDataLoader.dataset: torch.utils.data.dataset.Dataset[torch.utils.data.dataloader.T_co]#
batch_size#
num_workers#
pin_memory#
drop_last#
timeout#
sampler#
- SemiSupervisedDataLoader.sampler: Union[torch.utils.data.sampler.Sampler, Iterable]#
prefetch_factor#
Methods#
check_worker_number_rationality#
- SemiSupervisedDataLoader.check_worker_number_rationality()#