scvi.train.AdversarialTrainingPlan#
- class scvi.train.AdversarialTrainingPlan(module, lr=0.001, weight_decay=1e-06, n_steps_kl_warmup=None, n_epochs_kl_warmup=400, reduce_lr_on_plateau=False, lr_factor=0.6, lr_patience=30, lr_threshold=0.0, lr_scheduler_metric='elbo_validation', lr_min=0, adversarial_classifier=False, scale_adversarial_loss='auto', **loss_kwargs)[source]#
Bases:
scvi.train._trainingplans.TrainingPlan
Train vaes with adversarial loss option to encourage latent space mixing.
- Parameters
- module :
BaseModuleClass
A module instance from class
BaseModuleClass
.- lr
Learning rate used for optimization
Adam
.- weight_decay
Weight decay used in
Adam
.- n_steps_kl_warmup :
int
|None
Optional
[int
] (default:None
) Number of training steps (minibatches) to scale weight on KL divergences from 0 to 1. Only activated when n_epochs_kl_warmup is set to None.
- n_epochs_kl_warmup :
int
|None
Optional
[int
] (default:400
) Number of epochs to scale weight on KL divergences from 0 to 1. Overrides n_steps_kl_warmup when both are not None.
- reduce_lr_on_plateau :
bool
(default:False
) Whether to monitor validation loss and reduce learning rate when validation set lr_scheduler_metric plateaus.
- lr_factor :
float
(default:0.6
) Factor to reduce learning rate.
- lr_patience :
int
(default:30
) Number of epochs with no improvement after which learning rate will be reduced.
- lr_threshold :
float
(default:0.0
) Threshold for measuring the new optimum.
- lr_scheduler_metric : {‘elbo_validation’, ‘reconstruction_loss_validation’, ‘kl_local_validation’}
Literal
[‘elbo_validation’, ‘reconstruction_loss_validation’, ‘kl_local_validation’] (default:'elbo_validation'
) Which metric to track for learning rate reduction.
- lr_min :
float
(default:0
) Minimum learning rate allowed
- adversarial_classifier :
bool
|Classifier
Union
[bool
,Classifier
] (default:False
) Whether to use adversarial classifier in the latent space
- scale_adversarial_loss :
float
| {‘auto’}Union
[float
,Literal
[‘auto’]] (default:'auto'
) Scaling factor on the adversarial components of the loss. By default, adversarial loss is scaled from 1 to 0 following opposite of kl warmup.
- **loss_kwargs
Keyword args to pass to the loss method of the module. kl_weight should not be passed here and is handled automatically.
- module :
Attributes table#
Methods table#
Choose what optimizers and learning-rate schedulers to use in your optimization. |
|
|
|
|
Here you compute and return the training loss and some additional metrics for e.g. |
Attributes#
CHECKPOINT_HYPER_PARAMS_KEY#
- AdversarialTrainingPlan.CHECKPOINT_HYPER_PARAMS_KEY = 'hyper_parameters'#
CHECKPOINT_HYPER_PARAMS_NAME#
- AdversarialTrainingPlan.CHECKPOINT_HYPER_PARAMS_NAME = 'hparams_name'#
CHECKPOINT_HYPER_PARAMS_TYPE#
- AdversarialTrainingPlan.CHECKPOINT_HYPER_PARAMS_TYPE = 'hparams_type'#
T_destination#
- AdversarialTrainingPlan.T_destination#
alias of TypeVar(‘T_destination’, bound=
Mapping
[str
,torch.Tensor
])
alias of TypeVar(‘T_destination’, bound=Mapping
[str
, torch.Tensor
])
.. autoattribute:: AdversarialTrainingPlan.T_destination
automatic_optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
current_epoch#
device#
dtype#
dump_patches#
- AdversarialTrainingPlan.dump_patches: bool = False#
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
example_input_array#
- AdversarialTrainingPlan.example_input_array#
The example input array is a specification of what the module can consume in the
forward()
method. The return type is interpreted as follows:Single tensor: It is assumed the model takes a single argument, i.e.,
model.forward(model.example_input_array)
Tuple: The input array should be interpreted as a sequence of positional arguments, i.e.,
model.forward(*model.example_input_array)
Dict: The input array represents named keyword arguments, i.e.,
model.forward(**model.example_input_array)
- Return type
global_rank#
global_step#
hparams#
- AdversarialTrainingPlan.hparams#
The collection of hyperparameters saved with
save_hyperparameters()
. It is mutable by the user. For the frozen set of initial hyperparameters, usehparams_initial
.- Returns
mutable hyperparameters dicionary
- Return type
Union[AttributeDict, dict, Namespace]
hparams_initial#
kl_weight#
- AdversarialTrainingPlan.kl_weight#
Scaling factor on KL divergence during training.
loaded_optimizer_states_dict#
local_rank#
logger#
- AdversarialTrainingPlan.logger#
Reference to the logger object in the Trainer.
model_size#
n_obs_training#
- AdversarialTrainingPlan.n_obs_training#
Number of observations in the training set.
This will update the loss kwargs for loss rescaling.
Notes
This can get set after initialization
n_obs_validation#
- AdversarialTrainingPlan.n_obs_validation#
Number of observations in the validation set.
This will update the loss kwargs for loss rescaling.
Notes
This can get set after initialization
on_gpu#
- AdversarialTrainingPlan.on_gpu#
Returns
True
if this model is currently located on a GPU.Useful to set flags around the LightningModule for different CPU vs GPU behavior.
truncated_bptt_steps#
- AdversarialTrainingPlan.truncated_bptt_steps#
Enables Truncated Backpropagation Through Time in the Trainer when set to a positive integer.
It represents the number of times
training_step()
gets called before backpropagation. If this is > 0, thetraining_step()
receives an additional argumenthiddens
and is expected to return a hidden state.- Return type
training#
Methods#
configure_optimizers#
- AdversarialTrainingPlan.configure_optimizers()[source]#
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Returns
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.Tuple of dictionaries as described above, with an optional
"frequency"
key.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
The
frequency
value specified in a dict along with theoptimizer
key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:In the former case, all optimizers will operate on the given batch in each optimization step.
In the latter, only one optimizer will operate on the given batch at every step.
This is different from the
frequency
value specified in thelr_scheduler_config
mentioned above.def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {"optimizer": optimizer_one, "frequency": 5}, {"optimizer": optimizer_two, "frequency": 10}, ]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the
lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.Examples:
# most cases. no learning rate scheduler def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers # each optimizer has its own scheduler def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = { 'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step' # called after each training step } dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer and learning rate scheduler as needed.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.
loss_adversarial_classifier#
training_step#
- AdversarialTrainingPlan.training_step(batch, batch_idx, optimizer_idx=0)[source]#
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
- batch :
Tensor
| (Tensor
, …) | [Tensor
, …] The output of your
DataLoader
. A tensor, tuple or list.- batch_idx :
int
Integer displaying index of this batch
- optimizer_idx :
int
When using multiple optimizers, this argument will also be present.
- hiddens :
Any
Passed in if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0.
- batch :
- Returns
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch. This is only for automatic optimization.This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder ... if optimizer_idx == 1: # do training_step with decoder ...
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step out, hiddens = self.lstm(data, hiddens) loss = ... return {"loss": loss, "hiddens": hiddens}
Note
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.