scvi.dataloaders.SemiSupervisedDataLoader#
- class scvi.dataloaders.SemiSupervisedDataLoader(adata_manager, n_samples_per_label=None, indices=None, shuffle=False, batch_size=128, data_and_attributes=None, drop_last=False, **data_loader_kwargs)[source]#
DataLoader that supports semisupervised training.
- Parameters:
adata_manager (
AnnDataManager
) –AnnDataManager
object that has been created viasetup_anndata
.n_samples_per_label (
int
|None
(default:None
)) – Number of subsamples for each label class to sample per epoch. By default, there is no label subsampling.indices (
list
[int
] |None
(default:None
)) – The indices of the observations in the adata to loadshuffle (
bool
(default:False
)) – Whether the data should be shuffledbatch_size (
int
(default:128
)) – minibatch size to load each iterationdata_and_attributes (
dict
|None
(default:None
)) – Dictionary with keys representing keys in data registry (adata_manager.data_registry) and value equal to desired numpy loading type (later made into torch tensor). If None, defaults to all registered data.data_loader_kwargs – Keyword arguments for
DataLoader
Attributes table#
Methods table#
Resamples the labeled data. |
|
Subsamples each label class by taking up to n_samples_per_label samples per class. |
Attributes#
- SemiSupervisedDataLoader.dataset: Dataset[_T_co]#
- SemiSupervisedDataLoader.batch_size: Optional[int]#
- SemiSupervisedDataLoader.num_workers: int#
- SemiSupervisedDataLoader.pin_memory: bool#
- SemiSupervisedDataLoader.drop_last: bool#
- SemiSupervisedDataLoader.timeout: float#
- SemiSupervisedDataLoader.sampler: Union[Sampler, Iterable]#
- SemiSupervisedDataLoader.pin_memory_device: str#
- SemiSupervisedDataLoader.prefetch_factor: Optional[int]#