scvi.external.CellAssign#
- class scvi.external.CellAssign(adata, cell_type_markers, **model_kwargs)[source]#
Reimplementation of CellAssign for reference-based annotation [Zhang et al., 2019].
Original implementation: irrationone/cellassign.
- Parameters:
adata (
AnnData
) – single-cell AnnData object that has been registered viasetup_anndata()
. The object should be subset to contain the same genes as the cell type marker dataframe.cell_type_markers (
DataFrame
) – Binary marker gene DataFrame of genes by cell types. Gene names corresponding to adata.var_names should be in DataFrame index, and cell type labels should be the columns.**model_kwargs – Keyword args for
CellAssignModule
Examples
>>> adata = scvi.data.read_h5ad(path_to_anndata) >>> library_size = adata.X.sum(1) >>> adata.obs["size_factor"] = library_size / np.mean(library_size) >>> marker_gene_mat = pd.read_csv(path_to_marker_gene_csv) >>> bdata = adata[:, adata.var.index.isin(marker_gene_mat.index)].copy() >>> CellAssign.setup_anndata(bdata, size_factor_key="size_factor") >>> model = CellAssign(bdata, marker_gene_mat) >>> model.train() >>> predictions = model.predict(bdata)
Notes
Size factors in the R implementation of CellAssign are computed using scran. An approximate approach computes the sum of UMI counts (library size) over all genes and divides by the mean library size.
See further usage examples in the following tutorial:
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
A unified method for differential expression analysis. |
|
Retrieves the |
|
Generate gene-gene correlation matrix using scvi uncertainty and expression. |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Returns the latent library size for each cell. |
|
Estimates for the parameters of the likelihood \(p(x \mid z)\). |
|
Returns the normalized (decoded) gene expression. |
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Generate predictive samples from the posterior predictive distribution. |
|
Predict soft cell type assignment probability for each cell. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Trains the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
Methods#
- classmethod CellAssign.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- CellAssign.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- CellAssign.differential_expression(adata=None, groupby=None, group1=None, group2=None, idx1=None, idx2=None, mode='change', delta=0.25, batch_size=None, all_stats=True, batch_correction=False, batchid1=None, batchid2=None, fdr_target=0.05, silent=False, weights='uniform', filter_outlier_cells=False, importance_weighting_kwargs=None, **kwargs)[source]#
A unified method for differential expression analysis.
Implements
'vanilla'
DE [Lopez et al., 2018] and'change'
mode DE [Boyeau et al., 2019].- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.groupby (
str
|None
(default:None
)) – The key of the observations grouping to consider.group1 (
list
[str
] |None
(default:None
)) – Subset of groups, e.g. [‘g1’, ‘g2’, ‘g3’], to which comparison shall be restricted, or all groups in groupby (default).group2 (
str
|None
(default:None
)) – If None, compare each group in group1 to the union of the rest of the groups in groupby. If a group identifier, compare with respect to this group.idx1 (
list
[int
] |list
[bool
] |str
|None
(default:None
)) – idx1 and idx2 can be used as an alternative to the AnnData keys. Custom identifier for group1 that can be of three sorts: (1) a boolean mask, (2) indices, or (3) a string. If it is a string, then it will query indices that verifies conditions on adata.obs, as described inpandas.DataFrame.query()
If idx1 is not None, this option overrides group1 and group2.idx2 (
list
[int
] |list
[bool
] |str
|None
(default:None
)) – Custom identifier for group2 that has the same properties as idx1. By default, includes all cells not specified in idx1.mode (
Literal
['vanilla'
,'change'
] (default:'change'
)) – Method for differential expression. See user guide for full explanation.delta (
float
(default:0.25
)) – specific case of region inducing differential expression. In this case, we suppose that \(R \setminus [-\delta, \delta]\) does not induce differential expression (change model default case).batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.all_stats (
bool
(default:True
)) – Concatenate count statistics (e.g., mean expression group 1) to DE results.batch_correction (
bool
(default:False
)) – Whether to correct for batch effects in DE inference.batchid1 (
list
[str
] |None
(default:None
)) – Subset of categories from batch_key registered insetup_anndata
, e.g. [‘batch1’, ‘batch2’, ‘batch3’], for group1. Only used if batch_correction is True, and by default all categories are used.batchid2 (
list
[str
] |None
(default:None
)) – Same as batchid1 for group2. batchid2 must either have null intersection with batchid1, or be exactly equal to batchid1. When the two sets are exactly equal, cells are compared by decoding on the same batch. When sets have null intersection, cells from group1 and group2 are decoded on each group in group1 and group2, respectively.fdr_target (
float
(default:0.05
)) – Tag features as DE based on posterior expected false discovery rate.silent (
bool
(default:False
)) – If True, disables the progress bar. Default: False.weights (
Optional
[Literal
['uniform'
,'importance'
]] (default:'uniform'
)) – Weights to use for sampling. If None, defaults to “uniform”.filter_outlier_cells (
bool
(default:False
)) – Whether to filter outlier cells withfilter_outlier_cells()
.importance_weighting_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed into_get_importance_weights()
.**kwargs – Keyword args for
scvi.model.base.DifferentialComputation.get_bayes_factors()
- Return type:
- Returns:
Differential expression DataFrame.
- CellAssign.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- CellAssign.get_feature_correlation_matrix(adata=None, indices=None, n_samples=10, batch_size=64, rna_size_factor=1000, transform_batch=None, correlation_type='spearman')[source]#
Generate gene-gene correlation matrix using scvi uncertainty and expression.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.n_samples (
int
(default:10
)) – Number of posterior samples to use for estimation.batch_size (
int
(default:64
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.rna_size_factor (
int
(default:1000
)) – size factor for RNA prior to sampling gamma distribution.transform_batch (
list
[int
|float
|str
] |None
(default:None
)) –Batches to condition on. If transform_batch is:
None, then real observed batch is used.
int, then batch transform_batch is used.
list of int, then values are averaged over provided batches.
correlation_type (
Literal
['spearman'
,'pearson'
] (default:'spearman'
)) – One of “pearson”, “spearman”.
- Return type:
- Returns:
Gene-gene correlation matrix
- CellAssign.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- CellAssign.get_latent_library_size(adata=None, indices=None, give_mean=True, batch_size=None)[source]#
Returns the latent library size for each cell.
This is denoted as \(\ell_n\) in the scVI paper.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.give_mean (
bool
(default:True
)) – Return the mean or a sample from the posterior distribution.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- Return type:
- CellAssign.get_likelihood_parameters(adata=None, indices=None, n_samples=1, give_mean=False, batch_size=None)[source]#
Estimates for the parameters of the likelihood \(p(x \mid z)\).
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.n_samples (
int
|None
(default:1
)) – Number of posterior samples to use for estimation.give_mean (
bool
|None
(default:False
)) – Return expected value of parameters or a samplesbatch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- Return type:
- CellAssign.get_normalized_expression(adata=None, indices=None, transform_batch=None, gene_list=None, library_size=1, n_samples=1, n_samples_overall=None, weights=None, batch_size=None, return_mean=True, return_numpy=None, **importance_weighting_kwargs)[source]#
Returns the normalized (decoded) gene expression.
This is denoted as \(\rho_n\) in the scVI paper.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.transform_batch (
list
[int
|float
|str
] |None
(default:None
)) –Batch to condition on. If transform_batch is:
None, then real observed batch is used.
int, then batch transform_batch is used.
gene_list (
list
[str
] |None
(default:None
)) – Return frequencies of expression for a subset of genes. This can save memory when working with large datasets and few genes are of interest.library_size (
Union
[float
,Literal
['latent'
]] (default:1
)) – Scale the expression frequencies to a common library size. This allows gene expression levels to be interpreted on a common scale of relevant magnitude. If set to “latent”, use the latent library size.n_samples (
int
(default:1
)) – Number of posterior samples to use for estimation.n_samples_overall (
int
(default:None
)) – Number of posterior samples to use for estimation. Overrides n_samples.weights (
Optional
[Literal
['uniform'
,'importance'
]] (default:None
)) – Weights to use for sampling. If None, defaults to “uniform”.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If either n_samples=1 or return_mean=True, defaults to False. Otherwise, it defaults to True.importance_weighting_kwargs – Keyword arguments passed into
_get_importance_weights()
.
- Return type:
- Returns:
If n_samples is provided and return_mean is False, this method returns a 3d tensor of shape (n_samples, n_cells, n_genes). If n_samples is provided and return_mean is True, it returns a 2d tensor of shape (n_cells, n_genes). In this case, return type is
DataFrame
unless return_numpy is True. Otherwise, the method expects n_samples_overall to be provided and returns a 2d tensor of shape (n_samples_overall, n_genes).
- classmethod CellAssign.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static CellAssign.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- CellAssign.posterior_predictive_sample(adata=None, indices=None, n_samples=1, gene_list=None, batch_size=None)[source]#
Generate predictive samples from the posterior predictive distribution.
The posterior predictive distribution is denoted as \(p(\hat{x} \mid x)\), where \(x\) is the input data and \(\hat{x}\) is the sampled data.
We sample from this distribution by first sampling
n_samples
times from the posterior distribution \(q(z \mid x)\) for a given observation, and then sampling from the likelihood \(p(\hat{x} \mid z)\) for each of these.- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object with an equivalent structure to the model’s dataset. IfNone
, defaults to theAnnData
object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of the observations inadata
to use. IfNone
, defaults to all the observations.n_samples (
int
(default:1
)) – Number of Monte Carlo samples to draw from the posterior predictive distribution for each observation.gene_list (
list
[str
] |None
(default:None
)) – Names of the genes to which to subset. IfNone
, defaults to all genes.batch_size (
int
|None
(default:None
)) – Minibatch size to use for data loading and model inference. Defaults toscvi.settings.batch_size
. Passed into_make_data_loader()
.
- Return type:
- Returns:
Sparse multidimensional array of shape
(n_obs, n_vars)
ifn_samples == 1
, else(n_obs, n_vars, n_samples)
.
- CellAssign.predict()[source]#
Predict soft cell type assignment probability for each cell.
- Return type:
- classmethod CellAssign.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- CellAssign.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod CellAssign.setup_anndata(adata, size_factor_key, batch_key=None, categorical_covariate_keys=None, continuous_covariate_keys=None, layer=None, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- Parameters:
adata (
AnnData
) – AnnData object. Rows represent cells, columns represent features.size_factor_key (
str
) – key in adata.obs with continuous valued size factors.batch_key (
str
|None
(default:None
)) – key in adata.obs for batch information. Categories will automatically be converted into integer categories and saved to adata.obs[‘_scvi_batch’]. If None, assigns the same batch to all the data.layer (
str
|None
(default:None
)) – if not None, uses this as the key in adata.layers for raw count data.categorical_covariate_keys (
list
[str
] |None
(default:None
)) – keys in adata.obs that correspond to categorical data. These covariates can be added in addition to the batch covariate and are also treated as nuisance factors (i.e., the model tries to minimize their effects on the latent space). Thus, these should not be used for biologically-relevant factors that you do _not_ want to correct for.continuous_covariate_keys (
list
[str
] |None
(default:None
)) – keys in adata.obs that correspond to continuous data. These covariates can be added in addition to the batch covariate and are also treated as nuisance factors (i.e., the model tries to minimize their effects on the latent space). Thus, these should not be used for biologically-relevant factors that you do _not_ want to correct for.
- CellAssign.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- CellAssign.train(max_epochs=400, lr=0.003, accelerator='auto', devices='auto', train_size=None, validation_size=None, shuffle_set_split=True, batch_size=1024, datasplitter_kwargs=None, plan_kwargs=None, early_stopping=True, early_stopping_patience=15, early_stopping_min_delta=0.0, **kwargs)[source]#
Trains the model.
- Parameters:
max_epochs (
int
(default:400
)) – Number of epochs to train forlr (
float
(default:0.003
)) – Learning rate for optimization.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.train_size (
float
|None
(default:None
)) – Size of training set in the range [0.0, 1.0].validation_size (
float
|None
(default:None
)) – Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. If False, the val, train, and test set are split in the sequential order of the data according to validation_size and train_size percentages.batch_size (
int
(default:1024
)) – Minibatch size to use during training.datasplitter_kwargs (
dict
|None
(default:None
)) – Additional keyword arguments passed intoDataSplitter
.plan_kwargs (
dict
|None
(default:None
)) – Keyword args forTrainingPlan
.early_stopping (
bool
(default:True
)) – Adds callback for early stopping on validation_lossearly_stopping_patience (
int
(default:15
)) – Number of times early stopping metric can not improve over early_stopping_min_deltaearly_stopping_min_delta (
float
(default:0.0
)) – Threshold for counting an epoch torwards patience train() will overwrite values present in plan_kwargs, when appropriate.**kwargs – Other keyword args for
Trainer
.