scvi.external.scbasset.ScBassetModule#
- class scvi.external.scbasset.ScBassetModule(n_cells, batch_ids=None, n_filters_init=288, n_repeat_blocks_tower=6, filters_mult=1.122, n_filters_pre_bottleneck=256, n_bottleneck_layer=32, batch_norm=True, dropout=0.0, l2_reg_cell_embedding=0.0)[source]#
Bases:
BaseModuleClass
PyTorch implementation of ScBasset [Yuan and Kelley, 2022].
Original implementation in Keras: calico/scBasset
- Parameters:
n_cells (
int
) – Number of cells to predict region accessibilitybatch_ids (
ndarray
|None
(default:None
)) – Array of (n_cells,) with batch ids for each celln_filters_init (
int
(default:288
)) – Number of filters for the initial conv layern_repeat_blocks_tower (
int
(default:6
)) – Number of layers in the convolutional towerfilters_mult (
float
(default:1.122
)) – Proportion by which the number of filters should inrease in the convolutional towern_bottleneck_layer (
int
(default:32
)) – Size of the bottleneck layerbatch_norm (
bool
(default:True
)) – Whether to apply batch norm across model layersdropout (
float
(default:0.0
)) – Dropout rate across layers, by default we do not do it for convolutional layers but we do it for the dense layersl2_reg_cell_embedding (
float
(default:0.0
)) – L2 regularization for the cell embedding layer
Attributes table#
Methods table#
|
Generative method for the model. |
|
Inference method for the model. |
|
Loss function for the model. |
Attributes#
- ScBassetModule.training: bool#