Source code for scvi.inference.posterior_utils

import os
from typing import List, Optional, Union

import anndata
import numpy as np
import pandas as pd
import scipy
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from scipy.optimize import linear_sum_assignment
from scipy.stats import entropy, kde
from sklearn.neighbors import KNeighborsRegressor, NearestNeighbors

from scvi.dataset import AnnDatasetFromAnnData


[docs]def load_posterior( dir_path: str, model: nn.Module, use_cuda: Optional[Union[bool, str]] = "auto", **posterior_kwargs ): """Function to use in order to retrieve a posterior that was saved using the ``save_posterior`` method Because of pytorch model loading usage, this function needs a scVI model object initialized with exact same parameters that during training. Because saved posteriors correspond to already trained models, data is loaded sequentially using a ``SequentialSampler``. Parameters ---------- dir_path directory containing the posterior properties to be retrieved. model scVI initialized model. use_cuda Specifies if the computations should be perfomed with a GPU. Default: ``True`` If ``auto``, then cuda availability is inferred, with a preference to load on GPU. If ``False``, the model will be loaded on the CPU, even if it was trained using a GPU. **posterior_kwargs additional parameters to feed to the posterior constructor. Returns ------- >>> model = VAE(nb_genes, n_batches, n_hidden=128, n_latent=10) >>> trainer = UnsupervisedTrainer(vae, dataset, train_size=0.5, use_cuda=use_cuda) >>> trainer.train(n_epochs=200) >>> trainer.train_set.save_posterior("./my_run_train_posterior") >>> model = VAE(nb_genes, n_batches, n_hidden=128, n_latent=10) >>> post = load_posterior("./my_run_train_posterior", model=model) """ # Avoid circular imports from scvi.inference.total_inference import TotalPosterior from scvi.inference.jvae_trainer import JPosterior from scvi.inference.posterior import Posterior from scvi.inference.annotation import AnnotationPosterior post_type_path = os.path.join(dir_path, "posterior_type.txt") dataset_path = os.path.join(dir_path, "anndata_dataset.h5ad") model_path = os.path.join(dir_path, "model_params.pt") indices_path = os.path.join(dir_path, "indices.npy") data_loader_kwargs_path = os.path.join(dir_path, "data_loader_kwargs.h5") # Infering posterior type with open(post_type_path, "r") as post_file: post_class_str = post_file.readline() str_to_classes = dict( TotalPosterior=TotalPosterior, JPosterior=JPosterior, Posterior=Posterior, AnnotationPosterior=AnnotationPosterior, ) if post_class_str not in str_to_classes: raise ValueError( "Posterior type {} not eligible for loading".format(post_class_str) ) post_class = str_to_classes[post_class_str] # Loading dataset and associated measurements ad = anndata.read_h5ad(filename=dataset_path) key = "cell_measurements_col_mappings" if key in ad.uns: cell_measurements_col_mappings = ad.uns[key] else: cell_measurements_col_mappings = dict() dataset = AnnDatasetFromAnnData( ad=ad, cell_measurements_col_mappings=cell_measurements_col_mappings ) # Loading scVI model if use_cuda == "auto": use_cuda = torch.cuda.is_available() use_cuda = use_cuda and torch.cuda.is_available() if use_cuda: model.load_state_dict(torch.load(model_path)) model.cuda() else: device = torch.device("cpu") model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() # Loading data loader options and posterior indices = np.load(file=indices_path) data_loader_kwargs = pd.read_hdf( data_loader_kwargs_path, key="data_loader" ).to_dict() my_post = post_class( model=model, gene_dataset=dataset, shuffle=False, indices=indices, use_cuda=use_cuda, data_loader_kwargs=data_loader_kwargs, **posterior_kwargs ) return my_post
def entropy_from_indices(indices): return entropy(np.array(np.unique(indices, return_counts=True)[1].astype(np.int32))) def entropy_batch_mixing( latent_space, batches, n_neighbors=50, n_pools=50, n_samples_per_pool=100 ): def entropy(hist_data): n_batches = len(np.unique(hist_data)) if n_batches > 2: raise ValueError("Should be only two clusters for this metric") frequency = np.mean(hist_data == 1) if frequency == 0 or frequency == 1: return 0 return -frequency * np.log(frequency) - (1 - frequency) * np.log(1 - frequency) n_neighbors = min(n_neighbors, len(latent_space) - 1) nne = NearestNeighbors(n_neighbors=1 + n_neighbors, n_jobs=8) nne.fit(latent_space) kmatrix = nne.kneighbors_graph(latent_space) - scipy.sparse.identity( latent_space.shape[0] ) score = 0 for t in range(n_pools): indices = np.random.choice( np.arange(latent_space.shape[0]), size=n_samples_per_pool ) score += np.mean( [ entropy( batches[ kmatrix[indices].nonzero()[1][ kmatrix[indices].nonzero()[0] == i ] ] ) for i in range(n_samples_per_pool) ] ) return score / float(n_pools) def plot_imputation(original, imputed, show_plot=True, title="Imputation"): y = imputed x = original ymax = 10 mask = x < ymax x = x[mask] y = y[mask] mask = y < ymax x = x[mask] y = y[mask] l_minimum = np.minimum(x.shape[0], y.shape[0]) x = x[:l_minimum] y = y[:l_minimum] data = np.vstack([x, y]) plt.figure(figsize=(5, 5)) axes = plt.gca() axes.set_xlim([0, ymax]) axes.set_ylim([0, ymax]) nbins = 50 # Evaluate a gaussian kde on a regular grid of nbins x nbins over data extents k = kde.gaussian_kde(data) xi, yi = np.mgrid[0 : ymax : nbins * 1j, 0 : ymax : nbins * 1j] zi = k(np.vstack([xi.flatten(), yi.flatten()])) plt.title(title, fontsize=12) plt.ylabel("Imputed counts") plt.xlabel("Original counts") plt.pcolormesh(yi, xi, zi.reshape(xi.shape), cmap="Reds") a, _, _, _ = np.linalg.lstsq(y[:, np.newaxis], x, rcond=-1) linspace = np.linspace(0, ymax) plt.plot(linspace, a * linspace, color="black") plt.plot(linspace, linspace, color="black", linestyle=":") if show_plot: plt.show() plt.savefig(title + ".png") def nn_overlap(X1, X2, k=100): """Compute the overlap between the k-nearest neighbor graph of X1 and X2 Using Spearman correlation of the adjacency matrices. """ assert len(X1) == len(X2) n_samples = len(X1) k = min(k, n_samples - 1) nne = NearestNeighbors(n_neighbors=k + 1) # "n_jobs=8 nne.fit(X1) kmatrix_1 = nne.kneighbors_graph(X1) - scipy.sparse.identity(n_samples) nne.fit(X2) kmatrix_2 = nne.kneighbors_graph(X2) - scipy.sparse.identity(n_samples) # 1 - spearman correlation from knn graphs spearman_correlation = scipy.stats.spearmanr( kmatrix_1.A.flatten(), kmatrix_2.A.flatten() )[0] # 2 - fold enrichment set_1 = set(np.where(kmatrix_1.A.flatten() == 1)[0]) set_2 = set(np.where(kmatrix_2.A.flatten() == 1)[0]) fold_enrichment = ( len(set_1.intersection(set_2)) * n_samples ** 2 / (float(len(set_1)) * len(set_2)) ) return spearman_correlation, fold_enrichment def unsupervised_clustering_accuracy( y: Union[np.ndarray, torch.Tensor], y_pred: Union[np.ndarray, torch.Tensor] ) -> tuple: """Unsupervised Clustering Accuracy """ assert len(y_pred) == len(y) u = np.unique(np.concatenate((y, y_pred))) n_clusters = len(u) mapping = dict(zip(u, range(n_clusters))) reward_matrix = np.zeros((n_clusters, n_clusters), dtype=np.int64) for y_pred_, y_ in zip(y_pred, y): if y_ in mapping: reward_matrix[mapping[y_pred_], mapping[y_]] += 1 cost_matrix = reward_matrix.max() - reward_matrix row_assign, col_assign = linear_sum_assignment(cost_matrix) # Construct optimal assignments matrix row_assign = row_assign.reshape((-1, 1)) # (n,) to (n, 1) reshape col_assign = col_assign.reshape((-1, 1)) # (n,) to (n, 1) reshape assignments = np.concatenate((row_assign, col_assign), axis=1) optimal_reward = reward_matrix[row_assign, col_assign].sum() * 1.0 return optimal_reward / y_pred.size, assignments def knn_purity(latent, label, n_neighbors=30): nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(latent) indices = nbrs.kneighbors(latent, return_distance=False)[:, 1:] neighbors_labels = np.vectorize(lambda i: label[i])(indices) # pre cell purity scores scores = ((neighbors_labels - label.reshape(-1, 1)) == 0).mean(axis=1) res = [ np.mean(scores[label == i]) for i in np.unique(label) ] # per cell-type purity return np.mean(res) def proximity_imputation(real_latent1, normed_gene_exp_1, real_latent2, k=4): knn = KNeighborsRegressor(k, weights="distance") y = knn.fit(real_latent1, normed_gene_exp_1).predict(real_latent2) return y def pairs_sampler( arr1: Union[List[float], np.ndarray, torch.Tensor], arr2: Union[List[float], np.ndarray, torch.Tensor], use_permutation: bool = True, M_permutation: int = None, sanity_check_perm: bool = False, weights1: Union[List[float], np.ndarray, torch.Tensor] = None, weights2: Union[List[float], np.ndarray, torch.Tensor] = None, ) -> tuple: """In a context where we want to estimate a double sum, virtually increases the number of samples by considering more pairs so as to better estimate the double summation operation Parameters ---------- arr1 samples from population 1 arr2 samples from population 2 use_permutation Whether to mix samples from both populations M_permutation param sanity_check_perm: If True, resulting mixed arrays arr1 and arr2 are mixed together In most cases, this parameter should remain False weights1 probabilities associated to array 1 for random sampling weights2 probabilities associated to array 2 for random sampling Returns ------- type new_arr1, new_arr2 """ if use_permutation is True: # prepare the pairs for sampling n_arr1 = arr1.shape[0] n_arr2 = arr2.shape[0] if not sanity_check_perm: # case1: no permutation, sample from A and then from B u, v = ( np.random.choice(n_arr1, size=M_permutation, p=weights1), np.random.choice(n_arr2, size=M_permutation, p=weights2), ) first_set = arr1[u] second_set = arr2[v] else: # case2: permutation, sample from A+B twice (sanity check) u, v = ( np.random.choice(n_arr1 + n_arr2, size=M_permutation), np.random.choice(n_arr1 + n_arr2, size=M_permutation), ) concat_arr = np.concatenate((arr1, arr2)) first_set = concat_arr[u] second_set = concat_arr[v] else: first_set = arr1 second_set = arr2 return first_set, second_set def credible_intervals( ary: np.ndarray, confidence_level: Union[float, List[float], np.ndarray] = 0.94 ) -> np.ndarray: """Calculate highest posterior density (HPD) of array for given credible_interval. Taken from the arviz package The HPD is the minimum width Bayesian credible interval (BCI). This implementation works only for unimodal distributions. Parameters ---------- ary posterior samples confidence_level confidence level Returns ------- type intervals minima, intervals maxima """ if ary.ndim > 1: hpd = np.array( [ credible_intervals(row, confidence_level=confidence_level) for row in ary.T ] ) return hpd # Make a copy of trace ary = ary.copy() n = len(ary) ary = np.sort(ary) interval_idx_inc = int(np.floor(confidence_level * n)) n_intervals = n - interval_idx_inc interval_width = ary[interval_idx_inc:] - ary[:n_intervals] if len(interval_width) == 0: raise ValueError( "Too few elements for interval calculation. " "Check that credible_interval meets condition 0 =< credible_interval < 1" ) min_idx = np.argmin(interval_width) hdi_min = ary[min_idx] hdi_max = ary[min_idx + interval_idx_inc] return np.array([hdi_min, hdi_max]) def describe_continuous_distrib( samples: Union[np.ndarray, torch.Tensor], credible_intervals_levels: Optional[Union[List[float], np.ndarray]] = None, ) -> dict: """Computes properties of distribution based on its samples Parameters ---------- samples samples of shape (n_samples, n_features) credible_intervals_levels Confidence in (0, 1) of credible intervals to be computed Returns ------- type properties of distribution """ dist_props = dict( mean=samples.mean(0), median=np.median(samples, 0), std=samples.std(0), min=samples.min(0), max=samples.max(0), ) credible_intervals_levels = ( [] if credible_intervals_levels is None else credible_intervals_levels ) for confidence in credible_intervals_levels: intervals = credible_intervals(samples, confidence_level=confidence) interval_min, interval_max = intervals[:, 0], intervals[:, 1] conf_str = str(confidence)[:5] dist_props["confidence_interval_{}_min".format(conf_str)] = interval_min dist_props["confidence_interval_{}_max".format(conf_str)] = interval_max return dist_props def save_cluster_xlsx( filepath: str, de_results: List[pd.DataFrame], cluster_names: List ): """Saves multi-clusters DE in an xlsx sheet Parameters ---------- filepath xslx save path de_results list of pandas Dataframes for each cluster cluster_names list of cluster names """ writer = pd.ExcelWriter(filepath, engine="xlsxwriter") for i, x in enumerate(cluster_names): de_results[i].to_excel(writer, sheet_name=str(x)) writer.close()