scvi.dataloaders.DataSplitter#
- class scvi.dataloaders.DataSplitter(adata_manager, train_size=0.9, validation_size=None, shuffle_set_split=True, load_sparse_tensor=False, pin_memory=False, external_indexing=None, **kwargs)[source]#
Creates data loaders
train_set
,validation_set
,test_set
.If
train_size + validation_set < 1
thentest_set
is non-empty.- Parameters:
adata_manager (
AnnDataManager
) –AnnDataManager
object that has been created viasetup_anndata
.train_size (
float
(default:0.9
)) – float, or None (default is 0.9)validation_size (
float
|None
(default:None
)) – float, or None (default is None)shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. If False, the val, train, and test set are split in the sequential order of the data according to validation_size and train_size percentages.load_sparse_tensor (
bool
(default:False
)) –EXPERIMENTAL
If True, loads sparse CSR or CSC arrays in the input dataset as sparseTensor
with the same layout. Can lead to significant speedups in transferring data to GPUs, depending on the sparsity of the data.pin_memory (
bool
(default:False
)) – Whether to copy tensors into device-pinned memory before returning them. Passed intoAnnDataLoader
.external_indexing (
list
[array
,array
,array
] |None
(default:None
)) – A list of data split indices in the order of training, validation, and test sets. Validation and test set are not required and can be left empty.**kwargs – Keyword args for data loader. If adata has labeled data, data loader class is
SemiSupervisedDataLoader
, else data loader class isAnnDataLoader
.
Examples
>>> adata = scvi.data.synthetic_iid() >>> scvi.model.SCVI.setup_anndata(adata) >>> adata_manager = scvi.model.SCVI(adata).adata_manager >>> splitter = DataSplitter(adata) >>> splitter.setup() >>> train_dl = splitter.train_dataloader()
Attributes table#
The collection of hyperparameters saved with |
|
The collection of hyperparameters saved with |
|
Methods table#
|
Create an instance from torch.utils.data.Dataset. |
|
Primary way of loading a datamodule from a checkpoint. |
|
Called when loading a checkpoint, implement to reload datamodule state given datamodule state_dict. |
|
Converts sparse tensors to dense if necessary. |
|
Override to alter or apply batch augmentations to your batch before it is transferred to the device. |
|
Called when the trainer execution is interrupted by an exception. |
An iterable or collection of iterables specifying prediction samples. |
|
Use this to download and prepare data. |
|
|
Save arguments to |
|
Split indices in train/test/val sets. |
Called when saving a checkpoint, implement to generate and save datamodule state. |
|
|
Called at the end of fit (train + validate), validate, test, or predict. |
Create test data loader. |
|
Create train data loader. |
|
|
Override this hook if your |
Create validation data loader. |
Attributes#
- DataSplitter.CHECKPOINT_HYPER_PARAMS_KEY = 'datamodule_hyper_parameters'#
- DataSplitter.CHECKPOINT_HYPER_PARAMS_NAME = 'datamodule_hparams_name'#
- DataSplitter.CHECKPOINT_HYPER_PARAMS_TYPE = 'datamodule_hparams_type'#
- DataSplitter.hparams[source]#
The collection of hyperparameters saved with
save_hyperparameters()
. It is mutable by the user. For the frozen set of initial hyperparameters, usehparams_initial
.- Returns:
Mutable hyperparameters dictionary
- DataSplitter.hparams_initial[source]#
The collection of hyperparameters saved with
save_hyperparameters()
. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed throughhparams
.- Returns:
immutable initial hyperparameters
- Return type:
AttributeDict
- DataSplitter.name: Optional[str] = None#
Methods#
- classmethod DataSplitter.from_datasets(train_dataset=None, val_dataset=None, test_dataset=None, predict_dataset=None, batch_size=1, num_workers=0, **datamodule_kwargs)[source]#
Create an instance from torch.utils.data.Dataset.
- Parameters:
train_dataset (
Union
[Dataset
,Iterable
[Dataset
],None
] (default:None
)) – Optional dataset or iterable of datasets to be used for train_dataloader()val_dataset (
Union
[Dataset
,Iterable
[Dataset
],None
] (default:None
)) – Optional dataset or iterable of datasets to be used for val_dataloader()test_dataset (
Union
[Dataset
,Iterable
[Dataset
],None
] (default:None
)) – Optional dataset or iterable of datasets to be used for test_dataloader()predict_dataset (
Union
[Dataset
,Iterable
[Dataset
],None
] (default:None
)) – Optional dataset or iterable of datasets to be used for predict_dataloader()batch_size (
int
(default:1
)) – Batch size to use for each dataloader. Default is 1. This parameter gets forwarded to the__init__
if the datamodule has such a name defined in its signature.num_workers (
int
(default:0
)) – Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. Number of CPUs available. This parameter gets forwarded to the__init__
if the datamodule has such a name defined in its signature.**datamodule_kwargs (
Any
) – Additional parameters that get passed down to the datamodule’s__init__
.
- Return type:
- DataSplitter.load_from_checkpoint(checkpoint_path, map_location=None, hparams_file=None, **kwargs)[source]#
Primary way of loading a datamodule from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"datamodule_hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"datamodule_hyper_parameters"
.- Parameters:
checkpoint_path (
Union
[str
,Path
,IO
]) – Path to checkpoint. This can also be a URL, or file-like objectmap_location (
Union
[device
,str
,int
,Callable
[[UntypedStorage
,str
],Optional
[UntypedStorage
]],Dict
[Union
[device
,str
,int
],Union
[device
,str
,int
]],None
] (default:None
)) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as intorch.load()
.hparams_file (
Union
[str
,Path
,None
] (default:None
)) –Optional path to a
.yaml
or.csv
file with hierarchical structure as in this example:dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a
.yaml
file with the hparams you’d like to use. These will be converted into adict
and passed into yourLightningDataModule
for use.If your datamodule’s
hparams
argument isNamespace
and.yaml
file has hierarchical structure, you need to refactor your datamodule to treathparams
asdict
.**kwargs (
Any
) – Any extra keyword args needed to init the datamodule. Can also be used to override saved hyperparameter values.
- Return type:
Self
- Returns:
LightningDataModule
instance with loaded weights and hyperparameters (if available).
Note
load_from_checkpoint
is a class method. You must use yourLightningDataModule
class to call it instead of theLightningDataModule
instance, or aTypeError
will be raised.Example:
# load weights without mapping ... datamodule = MyLightningDataModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights and hyperparameters from separate files. datamodule = MyLightningDataModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values datamodule = MyLightningDataModule.load_from_checkpoint( PATH, batch_size=32, num_workers=10, )
- DataSplitter.load_state_dict(state_dict)[source]#
Called when loading a checkpoint, implement to reload datamodule state given datamodule state_dict.
- DataSplitter.on_after_batch_transfer(batch, dataloader_idx)[source]#
Converts sparse tensors to dense if necessary.
- DataSplitter.on_before_batch_transfer(batch, dataloader_idx)[source]#
Override to alter or apply batch augmentations to your batch before it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.- Parameters:
- Return type:
- Returns:
A batch of data
Example:
def on_before_batch_transfer(self, batch, dataloader_idx): batch['x'] = transforms(batch['x']) return batch
- DataSplitter.on_exception(exception)[source]#
Called when the trainer execution is interrupted by an exception.
- Return type:
- DataSplitter.predict_dataloader()[source]#
An iterable or collection of iterables specifying prediction samples.
For more information about multiple dataloaders, see this section.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Return type:
- Returns:
A
torch.utils.data.DataLoader
or a sequence of them specifying prediction samples.
- DataSplitter.prepare_data()[source]#
Use this to download and prepare data. Downloading and saving data with multiple processes (distributed settings) will result in corrupted data. Lightning ensures this method is called only within a single process, so you can safely add your downloading logic within. :rtype:
None
Warning
DO NOT set state to the model (use
setup
instead) since this is NOT called on every deviceExample:
def prepare_data(self): # good download_data() tokenize() etc() # bad self.split = data_split self.some_state = some_other_state()
In a distributed environment,
prepare_data
can be called in two ways (using prepare_data_per_node)Once per node. This is the default and is only called on LOCAL_RANK=0.
Once in total. Only called on GLOBAL_RANK=0.
Example:
# DEFAULT # called once per node on LOCAL_RANK=0 of that node class LitDataModule(LightningDataModule): def __init__(self): super().__init__() self.prepare_data_per_node = True # call on GLOBAL_RANK=0 (great for shared file systems) class LitDataModule(LightningDataModule): def __init__(self): super().__init__() self.prepare_data_per_node = False
This is called before requesting the dataloaders:
model.prepare_data() initialize_distributed() model.setup(stage) model.train_dataloader() model.val_dataloader() model.test_dataloader() model.predict_dataloader()
- DataSplitter.save_hyperparameters(*args, ignore=None, frame=None, logger=True)[source]#
Save arguments to
hparams
attribute.- Parameters:
args (
Any
) – single object of dict, NameSpace or OmegaConf or string names or arguments from class__init__
ignore (
Union
[Sequence
[str
],str
,None
] (default:None
)) – an argument name or a list of argument names from class__init__
to be ignoredframe (
Optional
[FrameType
] (default:None
)) – a frame object. Default is Nonelogger (
bool
(default:True
)) – Whether to send the hyperparameters to the logger. Default: True
- Return type:
- Example::
>>> from lightning.pytorch.core.mixins import HyperparametersMixin >>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # manually assign arguments ... self.save_hyperparameters('arg1', 'arg3') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
>>> from lightning.pytorch.core.mixins import HyperparametersMixin >>> class AutomaticArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # equivalent automatic ... self.save_hyperparameters() ... def forward(self, *args, **kwargs): ... ... >>> model = AutomaticArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg2": abc "arg3": 3.14
>>> from lightning.pytorch.core.mixins import HyperparametersMixin >>> class SingleArgModel(HyperparametersMixin): ... def __init__(self, params): ... super().__init__() ... # manually assign single argument ... self.save_hyperparameters(params) ... def forward(self, *args, **kwargs): ... ... >>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14)) >>> model.hparams "p1": 1 "p2": abc "p3": 3.14
>>> from lightning.pytorch.core.mixins import HyperparametersMixin >>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # pass argument(s) to ignore as a string or in a list ... self.save_hyperparameters(ignore='arg2') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
- DataSplitter.state_dict()[source]#
Called when saving a checkpoint, implement to generate and save datamodule state.
- DataSplitter.teardown(stage)[source]#
Called at the end of fit (train + validate), validate, test, or predict.
- DataSplitter.transfer_batch_to_device(batch, device, dataloader_idx)[source]#
Override this hook if your
DataLoader
returns tensors wrapped in a custom data structure.The data types listed below (and any arbitrary nesting of them) are supported out of the box:
For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, …).
Note
This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.- Parameters:
- Return type:
- Returns:
A reference to the data on the new device.
Example:
def transfer_batch_to_device(self, batch, device, dataloader_idx): if isinstance(batch, CustomBatch): # move all tensors in your custom data structure to the device batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) elif dataloader_idx == 0: # skip device transfer for the first dataloader or anything you wish pass else: batch = super().transfer_batch_to_device(batch, device, dataloader_idx) return batch
See also
move_data_to_device()
apply_to_collection()