scvi.external.SCAR#
- class scvi.external.SCAR(adata, ambient_profile=None, n_hidden=150, n_latent=15, n_layers=2, dropout_rate=0.0, gene_likelihood='b', latent_distribution='normal', scale_activation='softplus_sp', sparsity=0.9, **model_kwargs)[source]#
Ambient RNA removal in scRNA-seq data [Sheng et al., 2022].
Original implementation: Novartis/scar. The models are parameter matched in architecture, activations, dropout, sparsity, and batch normalization.
- Parameters:
adata (AnnData) – AnnData object that has been registered via
setup_anndata()
.ambient_profile (str | np.ndarray | pd.DataFrame | torch.tensor | None (default:
None
)) – The probability of occurrence of each ambient transcript. If None, averaging cells to estimate the ambient profile, by default None.n_hidden (int (default:
150
)) – Number of nodes per hidden layer.n_latent (int (default:
15
)) – Dimensionality of the latent space.n_layers (int (default:
2
)) – Number of hidden layers used for encoder and decoder NNs.dropout_rate (float (default:
0.0
)) – Dropout rate for neural networks.gene_likelihood (Literal[‘zinb’, ‘nb’, ‘b’, ‘poisson’] (default:
'b'
)) – One of: *'b'
- Binomial distribution *'nb'
- Negative binomial distribution *'zinb'
- Zero-inflated negative binomial distribution *'poisson'
- Poisson distributionlatent_distribution (Literal[‘normal’, ‘ln’] (default:
'normal'
)) – One of: *'normal'
- Normal distribution *'ln'
- Logistic normal distribution (Normal(0, I) transformed by softmax)scale_activation (Literal[‘softmax’, ‘softplus’, ‘softplus_sp’] (default:
'softplus_sp'
)) – Activation layer to use for px_scale_decodersparsity (float (default:
0.9
)) – The sparsity of expected native signals. It varies between datasets, e.g. if one prefilters genes – use only highly variable genes – the sparsity should be low; on the other hand, it should be set high in the case of unflitered genes.**model_kwargs – Keyword args for
SCAR
Examples
>>> adata = anndata.read_h5ad(path_to_anndata) >>> raw_adata = anndata.read_h5ad(path_to_raw_anndata) >>> scvi_external.SCAR.setup_anndata(adata, batch_key="batch") >>> scvi_external.SCAR.get_ambient_profile(adata=adata, raw_adata=raw_adata, prob=0.995) >>> vae = scvi_external.SCAR(adata) >>> vae.train() >>> adata.obsm["X_scAR"] = vae.get_latent_representation() >>> adata.layers['denoised'] = vae.get_denoised_counts()
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
A unified method for differential expression analysis. |
|
Calculate ambient profile for relevant features. |
|
Retrieves the |
|
Generate observation samples from the posterior predictive distribution. |
|
Compute the evidence lower bound (ELBO) on the data. |
|
Generate gene-gene correlation matrix using scvi uncertainty and expression. |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Returns the latent library size for each cell. |
|
Compute the latent representation of the data. |
|
Estimates for the parameters of the likelihood \(p(x \mid z)\). |
|
Compute the marginal log-likehood of the data. |
|
Returns the normalized (decoded) gene expression. |
|
Compute the reconstruction error on the data. |
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Generate predictive samples from the posterior predictive distribution. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Train the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
Methods#
- classmethod SCAR.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- SCAR.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- SCAR.differential_expression(adata=None, groupby=None, group1=None, group2=None, idx1=None, idx2=None, mode='change', delta=0.25, batch_size=None, all_stats=True, batch_correction=False, batchid1=None, batchid2=None, fdr_target=0.05, silent=False, weights='uniform', filter_outlier_cells=False, importance_weighting_kwargs=None, **kwargs)[source]#
A unified method for differential expression analysis.
Implements
'vanilla'
DE [Lopez et al., 2018] and'change'
mode DE [Boyeau et al., 2019].- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.groupby (
str
|None
(default:None
)) – The key of the observations grouping to consider.group1 (
list
[str
] |None
(default:None
)) – Subset of groups, e.g. [‘g1’, ‘g2’, ‘g3’], to which comparison shall be restricted, or all groups in groupby (default).group2 (
str
|None
(default:None
)) – If None, compare each group in group1 to the union of the rest of the groups in groupby. If a group identifier, compare with respect to this group.idx1 (
list
[int
] |list
[bool
] |str
|None
(default:None
)) – idx1 and idx2 can be used as an alternative to the AnnData keys. Custom identifier for group1 that can be of three sorts: (1) a boolean mask, (2) indices, or (3) a string. If it is a string, then it will query indices that verifies conditions on adata.obs, as described inpandas.DataFrame.query()
If idx1 is not None, this option overrides group1 and group2.idx2 (
list
[int
] |list
[bool
] |str
|None
(default:None
)) – Custom identifier for group2 that has the same properties as idx1. By default, includes all cells not specified in idx1.mode (
Literal
['vanilla'
,'change'
] (default:'change'
)) – Method for differential expression. See user guide for full explanation.delta (
float
(default:0.25
)) – specific case of region inducing differential expression. In this case, we suppose that \(R \setminus [-\delta, \delta]\) does not induce differential expression (change model default case).batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.all_stats (
bool
(default:True
)) – Concatenate count statistics (e.g., mean expression group 1) to DE results.batch_correction (
bool
(default:False
)) – Whether to correct for batch effects in DE inference.batchid1 (
list
[str
] |None
(default:None
)) – Subset of categories from batch_key registered insetup_anndata
, e.g. [‘batch1’, ‘batch2’, ‘batch3’], for group1. Only used if batch_correction is True, and by default all categories are used.batchid2 (
list
[str
] |None
(default:None
)) – Same as batchid1 for group2. batchid2 must either have null intersection with batchid1, or be exactly equal to batchid1. When the two sets are exactly equal, cells are compared by decoding on the same batch. When sets have null intersection, cells from group1 and group2 are decoded on each group in group1 and group2, respectively.fdr_target (
float
(default:0.05
)) – Tag features as DE based on posterior expected false discovery rate.silent (
bool
(default:False
)) – If True, disables the progress bar. Default: False.weights (
Optional
[Literal
['uniform'
,'importance'
]] (default:'uniform'
)) – Weights to use for sampling. If None, defaults to “uniform”.filter_outlier_cells (
bool
(default:False
)) – Whether to filter outlier cells withfilter_outlier_cells()
.importance_weighting_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed into_get_importance_weights()
.**kwargs – Keyword args for
scvi.model.base.DifferentialComputation.get_bayes_factors()
- Return type:
- Returns:
Differential expression DataFrame.
- static SCAR.get_ambient_profile(adata, raw_adata, prob=0.995, min_raw_counts=2, iterations=3, n_batch=1, sample=50000)[source]#
Calculate ambient profile for relevant features.
Identify the cell-free droplets through a multinomial distribution. See EmptyDrops [Lun et al., 2019] for details.
- Parameters:
adata (
AnnData
) – A filtered adata object, loaded from filtered_feature_bc_matrix using scanpy.read, gene filtering is recommended to save memory.raw_adata (
AnnData
) – A raw adata object, loaded from raw_feature_bc_matrix usingread()
.prob (
float
(default:0.995
)) – The probability of each gene, considered as containing ambient RNA if greater than prob (joint prob euqals to the product of all genes for a droplet), by default 0.995.min_raw_counts (
int
(default:2
)) – Total counts filter for raw_adata, filtering out low counts to save memory, by default 2.iterations (
int
(default:3
)) – Total iterations, by default 3.n_batch (
int
(default:1
)) – Total number of batches, set it to a bigger number when out of memory issue occurs, by default 1.sample (
int
(default:50000
)) – Randomly sample droplets to test, if greater than total droplets, use all droplets, by default 50000.
- Returns:
The relevant ambient profile is added in adata.varm
- SCAR.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- SCAR.get_denoised_counts(adata=None, n_samples=1, batch_size=None)[source]#
Generate observation samples from the posterior predictive distribution.
The posterior predictive distribution is written as \(p(\hat{x} \mid x)\).
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.n_samples (
int
(default:1
)) – Number of samples for each cell.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- Return type:
- Returns:
tensor with shape (n_cells, n_genes)
- SCAR.get_elbo(adata=None, indices=None, batch_size=None, dataloader=None, return_mean=True, **kwargs)[source]#
Compute the evidence lower bound (ELBO) on the data.
The ELBO is the reconstruction error plus the Kullback-Leibler (KL) divergences between the variational distributions and the priors. It is different from the marginal log-likelihood; specifically, it is a lower bound on the marginal log-likelihood plus a term that is constant with respect to the variational distribution. It still gives good insights on the modeling of the data and is fast to compute.
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
.batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
.dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.return_mean (
bool
(default:True
)) – Whether to return the mean of the ELBO or the ELBO for each observation.**kwargs – Additional keyword arguments to pass into the forward method of the module.
- Return type:
- Returns:
Evidence lower bound (ELBO) of the data.
Notes
This is not the negative ELBO, so higher is better.
- SCAR.get_feature_correlation_matrix(adata=None, indices=None, n_samples=10, batch_size=64, rna_size_factor=1000, transform_batch=None, correlation_type='spearman')[source]#
Generate gene-gene correlation matrix using scvi uncertainty and expression.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.n_samples (
int
(default:10
)) – Number of posterior samples to use for estimation.batch_size (
int
(default:64
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.rna_size_factor (
int
(default:1000
)) – size factor for RNA prior to sampling gamma distribution.transform_batch (
list
[int
|float
|str
] |None
(default:None
)) –Batches to condition on. If transform_batch is:
None, then real observed batch is used.
int, then batch transform_batch is used.
list of int, then values are averaged over provided batches.
correlation_type (
Literal
['spearman'
,'pearson'
] (default:'spearman'
)) – One of “pearson”, “spearman”.
- Return type:
- Returns:
Gene-gene correlation matrix
- SCAR.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- SCAR.get_latent_library_size(adata=None, indices=None, give_mean=True, batch_size=None)[source]#
Returns the latent library size for each cell.
This is denoted as \(\ell_n\) in the scVI paper.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.give_mean (
bool
(default:True
)) – Return the mean or a sample from the posterior distribution.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- Return type:
- SCAR.get_latent_representation(adata=None, indices=None, give_mean=True, mc_samples=5000, batch_size=None, return_dist=False, dataloader=None)[source]#
Compute the latent representation of the data.
This is typically denoted as \(z_n\).
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
give_mean (
bool
(default:True
)) – IfTrue
, returns the mean of the latent distribution. IfFalse
, returns an estimate of the mean usingmc_samples
Monte Carlo samples.mc_samples (
int
(default:5000
)) – Number of Monte Carlo samples to use for the estimator for distributions with no closed-form mean (e.g., the logistic normal distribution). Not used ifgive_mean
isTrue
or ifreturn_dist
isTrue
.batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
return_dist (
bool
(default:False
)) – IfTrue
, returns the mean and variance of the latent distribution. Otherwise, returns the mean of the latent distribution.dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.
- Return type:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]] |tuple
[ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]],ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]]- Returns:
An array of shape
(n_obs, n_latent)
ifreturn_dist
isFalse
. Otherwise, returns a tuple of arrays(n_obs, n_latent)
with the mean and variance of the latent distribution.
- SCAR.get_likelihood_parameters(adata=None, indices=None, n_samples=1, give_mean=False, batch_size=None)[source]#
Estimates for the parameters of the likelihood \(p(x \mid z)\).
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.n_samples (
int
|None
(default:1
)) – Number of posterior samples to use for estimation.give_mean (
bool
|None
(default:False
)) – Return expected value of parameters or a samplesbatch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.
- Return type:
- SCAR.get_marginal_ll(adata=None, indices=None, n_mc_samples=1000, batch_size=None, return_mean=True, dataloader=None, **kwargs)[source]#
Compute the marginal log-likehood of the data.
The computation here is a biased estimator of the marginal log-likelihood of the data.
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
.n_mc_samples (
int
(default:1000
)) – Number of Monte Carlo samples to use for the estimator. Passed into the module’smarginal_ll
method.batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
.return_mean (
bool
(default:True
)) – Whether to return the mean of the marginal log-likelihood or the marginal-log likelihood for each observation.dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.**kwargs – Additional keyword arguments to pass into the module’s
marginal_ll
method.
- Return type:
float
|Tensor
- Returns:
If
True
, returns the mean marginal log-likelihood. Otherwise returns a tensor of shape(n_obs,)
with the marginal log-likelihood for each observation.
Notes
This is not the negative log-likelihood, so higher is better.
- SCAR.get_normalized_expression(adata=None, indices=None, transform_batch=None, gene_list=None, library_size=1, n_samples=1, n_samples_overall=None, weights=None, batch_size=None, return_mean=True, return_numpy=None, **importance_weighting_kwargs)[source]#
Returns the normalized (decoded) gene expression.
This is denoted as \(\rho_n\) in the scVI paper.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. If None, defaults to the AnnData object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of cells in adata to use. If None, all cells are used.transform_batch (
list
[int
|float
|str
] |None
(default:None
)) –Batch to condition on. If transform_batch is:
None, then real observed batch is used.
int, then batch transform_batch is used.
gene_list (
list
[str
] |None
(default:None
)) – Return frequencies of expression for a subset of genes. This can save memory when working with large datasets and few genes are of interest.library_size (
Union
[float
,Literal
['latent'
]] (default:1
)) – Scale the expression frequencies to a common library size. This allows gene expression levels to be interpreted on a common scale of relevant magnitude. If set to “latent”, use the latent library size.n_samples (
int
(default:1
)) – Number of posterior samples to use for estimation.n_samples_overall (
int
(default:None
)) – Number of posterior samples to use for estimation. Overrides n_samples.weights (
Optional
[Literal
['uniform'
,'importance'
]] (default:None
)) – Weights to use for sampling. If None, defaults to “uniform”.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults to scvi.settings.batch_size.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If either n_samples=1 or return_mean=True, defaults to False. Otherwise, it defaults to True.importance_weighting_kwargs – Keyword arguments passed into
_get_importance_weights()
.
- Return type:
- Returns:
If n_samples is provided and return_mean is False, this method returns a 3d tensor of shape (n_samples, n_cells, n_genes). If n_samples is provided and return_mean is True, it returns a 2d tensor of shape (n_cells, n_genes). In this case, return type is
DataFrame
unless return_numpy is True. Otherwise, the method expects n_samples_overall to be provided and returns a 2d tensor of shape (n_samples_overall, n_genes).
- SCAR.get_reconstruction_error(adata=None, indices=None, batch_size=None, dataloader=None, return_mean=True, **kwargs)[source]#
Compute the reconstruction error on the data.
The reconstruction error is the negative log likelihood of the data given the latent variables. It is different from the marginal log-likelihood, but still gives good insights on the modeling of the data and is fast to compute. This is typically written as \(p(x \mid z)\), the likelihood term given one posterior sample.
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.return_mean (
bool
(default:True
)) – Whether to return the mean reconstruction loss or the reconstruction loss for each observation.**kwargs – Additional keyword arguments to pass into the forward method of the module.
- Return type:
- Returns:
Reconstruction error for the data.
Notes
This is not the negative reconstruction error, so higher is better.
- classmethod SCAR.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static SCAR.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- SCAR.posterior_predictive_sample(adata=None, indices=None, n_samples=1, gene_list=None, batch_size=None)[source]#
Generate predictive samples from the posterior predictive distribution.
The posterior predictive distribution is denoted as \(p(\hat{x} \mid x)\), where \(x\) is the input data and \(\hat{x}\) is the sampled data.
We sample from this distribution by first sampling
n_samples
times from the posterior distribution \(q(z \mid x)\) for a given observation, and then sampling from the likelihood \(p(\hat{x} \mid z)\) for each of these.- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object with an equivalent structure to the model’s dataset. IfNone
, defaults to theAnnData
object used to initialize the model.indices (
list
[int
] |None
(default:None
)) – Indices of the observations inadata
to use. IfNone
, defaults to all the observations.n_samples (
int
(default:1
)) – Number of Monte Carlo samples to draw from the posterior predictive distribution for each observation.gene_list (
list
[str
] |None
(default:None
)) – Names of the genes to which to subset. IfNone
, defaults to all genes.batch_size (
int
|None
(default:None
)) – Minibatch size to use for data loading and model inference. Defaults toscvi.settings.batch_size
. Passed into_make_data_loader()
.
- Return type:
- Returns:
Sparse multidimensional array of shape
(n_obs, n_vars)
ifn_samples == 1
, else(n_obs, n_vars, n_samples)
.
- classmethod SCAR.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- SCAR.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod SCAR.setup_anndata(adata, layer=None, size_factor_key=None, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- Parameters:
adata (
AnnData
) – AnnData object. Rows represent cells, columns represent features.layer (
str
|None
(default:None
)) – if not None, uses this as the key in adata.layers for raw count data.size_factor_key (
str
|None
(default:None
)) – key in adata.obs for size factor information. Instead of using library size as a size factor, the provided size factor column will be used as offset in the mean of the likelihood. Assumed to be on linear scale.
- SCAR.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- SCAR.train(max_epochs=None, accelerator='auto', devices='auto', train_size=0.9, validation_size=None, shuffle_set_split=True, load_sparse_tensor=False, batch_size=128, early_stopping=False, datasplitter_kwargs=None, plan_kwargs=None, datamodule=None, **trainer_kwargs)[source]#
Train the model.
- Parameters:
max_epochs (
int
|None
(default:None
)) – The maximum number of epochs to train the model. The actual number of epochs may be less if early stopping is enabled. IfNone
, defaults to a heuristic based onget_max_epochs_heuristic()
. Must be passed in ifdatamodule
is passed in, and it does not have ann_obs
attribute.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.train_size (
float
(default:0.9
)) – Size of training set in the range[0.0, 1.0]
. Passed intoDataSplitter
. Not used ifdatamodule
is passed in.validation_size (
float
|None
(default:None
)) – Size of the test set. IfNone
, defaults to1 - train_size
. Iftrain_size + validation_size < 1
, the remaining cells belong to a test set. Passed intoDataSplitter
. Not used ifdatamodule
is passed in.shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. IfFalse
, the val, train, and test set are split in the sequential order of the data according tovalidation_size
andtrain_size
percentages. Passed intoDataSplitter
. Not used ifdatamodule
is passed in.load_sparse_tensor (
bool
(default:False
)) –EXPERIMENTAL
IfTrue
, loads data with sparse CSR or CSC layout as aTensor
with the same layout. Can lead to speedups in data transfers to GPUs, depending on the sparsity of the data. Passed intoDataSplitter
. Not used ifdatamodule
is passed in.batch_size (
int
(default:128
)) – Minibatch size to use during training. Passed intoDataSplitter
. Not used ifdatamodule
is passed in.early_stopping (
bool
(default:False
)) – Perform early stopping. Additional arguments can be passed in through**kwargs
. SeeTrainer
for further options.datasplitter_kwargs (
dict
|None
(default:None
)) – Additional keyword arguments passed intoDataSplitter
. Values in this argument can be overwritten by arguments directly passed into this method, when appropriate. Not used ifdatamodule
is passed in.plan_kwargs (
dict
|None
(default:None
)) – Additional keyword arguments passed intoTrainingPlan
. Values in this argument can be overwritten by arguments directly passed into this method, when appropriate.datamodule (
LightningDataModule
|None
(default:None
)) –EXPERIMENTAL
ALightningDataModule
instance to use for training in place of the defaultDataSplitter
. Can only be passed in if the model was not initialized withAnnData
.**kwargs – Additional keyword arguments passed into
Trainer
.