scvi.external.VELOVI#
- class scvi.external.VELOVI(adata, n_hidden=256, n_latent=10, n_layers=1, dropout_rate=0.1, gamma_init_data=False, linear_decoder=False, **model_kwargs)[source]#
BETA
Velocity Variational Inference [Gayoso et al., 2023].- Parameters:
adata (
AnnData
) – AnnData object that has been registered viasetup_anndata()
.n_hidden (
int
(default:256
)) – Number of nodes per hidden layer.n_latent (
int
(default:10
)) – Dimensionality of the latent space.n_layers (
int
(default:1
)) – Number of hidden layers used for encoder and decoder NNs.dropout_rate (
float
(default:0.1
)) – Dropout rate for neural networks.gamma_init_data (
bool
(default:False
)) – Initialize gamma using the data-driven technique.linear_decoder (
bool
(default:False
)) – Use a linear decoder from latent space to time.**model_kwargs – Keyword args for
VELOVAE
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
Retrieves the |
|
|
|
Compute the evidence lower bound (ELBO) on the data. |
|
Returns the fitted spliced and unspliced abundance (s(t) and u(t)). |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Returns the likelihood per gene. |
|
Compute the latent representation of the data. |
|
Returns the cells by genes latent time. |
|
Compute the marginal log-likehood of the data. |
|
Compute permutation scores. |
|
Compute the reconstruction error on the data. |
|
Returns cells by genes by states probabilities. |
|
Returns cells by genes velocity estimates. |
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Train the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
Methods#
- classmethod VELOVI.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- VELOVI.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- VELOVI.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- VELOVI.get_elbo(adata=None, indices=None, batch_size=None, dataloader=None, return_mean=True, **kwargs)[source]#
Compute the evidence lower bound (ELBO) on the data.
The ELBO is the reconstruction error plus the Kullback-Leibler (KL) divergences between the variational distributions and the priors. It is different from the marginal log-likelihood; specifically, it is a lower bound on the marginal log-likelihood plus a term that is constant with respect to the variational distribution. It still gives good insights on the modeling of the data and is fast to compute.
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
.batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
.dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.return_mean (
bool
(default:True
)) – Whether to return the mean of the ELBO or the ELBO for each observation.**kwargs – Additional keyword arguments to pass into the forward method of the module.
- Return type:
- Returns:
Evidence lower bound (ELBO) of the data.
Notes
This is not the negative ELBO, so higher is better.
- VELOVI.get_expression_fit(adata=None, indices=None, gene_list=None, n_samples=1, batch_size=None, return_mean=True, return_numpy=None, restrict_to_latent_dim=None)[source]#
Returns the fitted spliced and unspliced abundance (s(t) and u(t)).
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. IfNone
, defaults to the AnnData object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. IfNone
, all cells are used.gene_list (
Sequence
[str
] |None
(default:None
)) – Return frequencies of expression for a subset of genes. This can save memory when working with large datasets and few genes are of interest.n_samples (
int
(default:1
)) – Number of posterior samples to use for estimation.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults tobatch_size
.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If eithern_samples=1
orreturn_mean=True
, defaults toFalse
. Otherwise, it defaults toTrue
.
- Return type:
- Returns:
If
n_samples
> 1 andreturn_mean
isFalse
, then the shape is(samples, cells, genes)
. Otherwise, shape is(cells, genes)
. In this case, return type isDataFrame
unlessreturn_numpy
isTrue
.
- VELOVI.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- VELOVI.get_gene_likelihood(adata=None, indices=None, gene_list=None, n_samples=1, batch_size=None, return_mean=True, return_numpy=None)[source]#
Returns the likelihood per gene. Higher is better.
This is denoted as \(\rho_n\) in the scVI paper.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. IfNone
, defaults to the AnnData object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. IfNone
, all cells are used.transform_batch –
Batch to condition on. One of the following:
None
: real observed batch is used.int
: batch transform_batch is used.
gene_list (
Sequence
[str
] |None
(default:None
)) – Return frequencies of expression for a subset of genes. This can save memory when working with large datasets and few genes are of interest.library_size – Scale the expression frequencies to a common library size. This allows gene expression levels to be interpreted on a common scale of relevant magnitude. If set to
"latent"
, use the latent libary size.n_samples (
int
(default:1
)) – Number of posterior samples to use for estimation.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults tobatch_size
.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If eithern_samples=1
orreturn_mean=True
, defaults toFalse
. Otherwise, it defaults toTrue
.
- Return type:
- Returns:
If
n_samples
> 1 andreturn_mean
isFalse
, then the shape is(samples, cells, genes)
. Otherwise, shape is(cells, genes)
. In this case, return type isDataFrame
unlessreturn_numpy
isTrue
.
- VELOVI.get_latent_representation(adata=None, indices=None, give_mean=True, mc_samples=5000, batch_size=None, return_dist=False, dataloader=None)[source]#
Compute the latent representation of the data.
This is typically denoted as \(z_n\).
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
give_mean (
bool
(default:True
)) – IfTrue
, returns the mean of the latent distribution. IfFalse
, returns an estimate of the mean usingmc_samples
Monte Carlo samples.mc_samples (
int
(default:5000
)) – Number of Monte Carlo samples to use for the estimator for distributions with no closed-form mean (e.g., the logistic normal distribution). Not used ifgive_mean
isTrue
or ifreturn_dist
isTrue
.batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
return_dist (
bool
(default:False
)) – IfTrue
, returns the mean and variance of the latent distribution. Otherwise, returns the mean of the latent distribution.dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.
- Return type:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]] |tuple
[ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]],ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]]- Returns:
An array of shape
(n_obs, n_latent)
ifreturn_dist
isFalse
. Otherwise, returns a tuple of arrays(n_obs, n_latent)
with the mean and variance of the latent distribution.
- VELOVI.get_latent_time(adata=None, indices=None, gene_list=None, time_statistic='mean', n_samples=1, n_samples_overall=None, batch_size=None, return_mean=True, return_numpy=None)[source]#
Returns the cells by genes latent time.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. IfNone
, defaults to the AnnData object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. IfNone
, all cells are used.gene_list (
Sequence
[str
] |None
(default:None
)) – Return frequencies of expression for a subset of genes. This can save memory when working with large datasets and few genes are of interest.time_statistic (
Literal
['mean'
,'max'
] (default:'mean'
)) – Whether to compute expected time over states, or maximum a posteriori time over maximal probability state.n_samples (
int
(default:1
)) – Number of posterior samples to use for estimation.n_samples_overall (
int
|None
(default:None
)) – Number of overall samples to return. Setting this forces n_samples=1.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults tobatch_size
.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If eithern_samples=1
orreturn_mean=True
, defaults toFalse
. Otherwise, it defaults toTrue
.
- Return type:
- Returns:
If
n_samples
> 1 andreturn_mean
isFalse
, then the shape is(samples, cells, genes)
. Otherwise, shape is(cells, genes)
. In this case, return type isDataFrame
unlessreturn_numpy
isTrue
.
- VELOVI.get_marginal_ll(adata=None, indices=None, n_mc_samples=1000, batch_size=None, return_mean=True, dataloader=None, **kwargs)[source]#
Compute the marginal log-likehood of the data.
The computation here is a biased estimator of the marginal log-likelihood of the data.
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
.n_mc_samples (
int
(default:1000
)) – Number of Monte Carlo samples to use for the estimator. Passed into the module’smarginal_ll
method.batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
.return_mean (
bool
(default:True
)) – Whether to return the mean of the marginal log-likelihood or the marginal-log likelihood for each observation.dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.**kwargs – Additional keyword arguments to pass into the module’s
marginal_ll
method.
- Return type:
float
|Tensor
- Returns:
If
True
, returns the mean marginal log-likelihood. Otherwise returns a tensor of shape(n_obs,)
with the marginal log-likelihood for each observation.
Notes
This is not the negative log-likelihood, so higher is better.
- VELOVI.get_permutation_scores(labels_key, adata=None)[source]#
Compute permutation scores.
- Parameters:
- Return type:
- Returns:
Tuple of DataFrame and AnnData. DataFrame is genes by cell types with score per cell type. AnnData is the permutated version of the original AnnData.
- VELOVI.get_reconstruction_error(adata=None, indices=None, batch_size=None, dataloader=None, return_mean=True, **kwargs)[source]#
Compute the reconstruction error on the data.
The reconstruction error is the negative log likelihood of the data given the latent variables. It is different from the marginal log-likelihood, but still gives good insights on the modeling of the data and is fast to compute. This is typically written as \(p(x \mid z)\), the likelihood term given one posterior sample.
- Parameters:
adata (
AnnData
|None
(default:None
)) –AnnData
object withvar_names
in the same order as the ones used to train the model. IfNone
anddataloader
is alsoNone
, it defaults to the object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of observations inadata
to use. IfNone
, defaults to all observations. Ignored ifdataloader
is notNone
batch_size (
int
|None
(default:None
)) – Minibatch size for the forward pass. IfNone
, defaults toscvi.settings.batch_size
. Ignored ifdataloader
is notNone
dataloader (
Iterator
[dict
[str
,Tensor
|None
]] (default:None
)) – An iterator over minibatches of data on which to compute the metric. The minibatches should be formatted as a dictionary ofTensor
with keys as expected by the model. IfNone
, a dataloader is created fromadata
.return_mean (
bool
(default:True
)) – Whether to return the mean reconstruction loss or the reconstruction loss for each observation.**kwargs – Additional keyword arguments to pass into the forward method of the module.
- Return type:
- Returns:
Reconstruction error for the data.
Notes
This is not the negative reconstruction error, so higher is better.
- VELOVI.get_state_assignment(adata=None, indices=None, gene_list=None, hard_assignment=False, n_samples=20, batch_size=None, return_mean=True, return_numpy=None)[source]#
Returns cells by genes by states probabilities.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. IfNone
, defaults to the AnnData object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. IfNone
, all cells are used.gene_list (
Sequence
[int
] |None
(default:None
)) – Return frequencies of expression for a subset of genes. This can save memory when working with large datasets and few genes are of interest.hard_assignment (
bool
(default:False
)) – Return a hard state assignmentn_samples (
int
(default:20
)) – Number of posterior samples to use for estimation.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults tobatch_size
.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If eithern_samples=1
orreturn_mean=True
, defaults toFalse
. Otherwise, it defaults toTrue
.
- Return type:
- Returns:
If
n_samples
> 1 andreturn_mean
isFalse
, then the shape is(samples, cells, genes)
. Otherwise, shape is(cells, genes)
. In this case, return type isDataFrame
unlessreturn_numpy
isTrue
.
- VELOVI.get_velocity(adata=None, indices=None, gene_list=None, n_samples=1, n_samples_overall=None, batch_size=None, return_mean=True, return_numpy=None, velo_statistic='mean', velo_mode='spliced', clip=True)[source]#
Returns cells by genes velocity estimates.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with equivalent structure to initial AnnData. IfNone
, defaults to the AnnData object used to initialize the model.indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. IfNone
, all cells are used.gene_list (
Sequence
[str
] |None
(default:None
)) – Return velocities for a subset of genes. This can save memory when working with large datasets and few genes are of interest.n_samples (
int
(default:1
)) – Number of posterior samples to use for estimation for each cell.n_samples_overall (
int
|None
(default:None
)) – Number of overall samples to return. Setting this forcesn_samples=1
.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Defaults tobatch_size
.return_mean (
bool
(default:True
)) – Whether to return the mean of the samples.return_numpy (
bool
|None
(default:None
)) – Return andarray
instead of aDataFrame
. DataFrame includes gene names as columns. If eithern_samples=1
orreturn_mean=True
, defaults toFalse
. Otherwise, it defaults toTrue
.velo_statistic (
str
(default:'mean'
)) – Whether to compute expected velocity over states, or maximum a posteriori velocity over maximal probability state.velo_mode (
Literal
['spliced'
,'unspliced'
] (default:'spliced'
)) – Compute ds/dt or du/dt.clip (
bool
(default:True
)) – Clip to minus spliced value
- Return type:
- Returns:
If
n_samples
> 1 andreturn_mean
isFalse
, then the shape is(samples, cells, genes)
. Otherwise, shape is(cells, genes)
. In this case, return type isDataFrame
unlessreturn_numpy
isTrue
.
- classmethod VELOVI.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static VELOVI.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- classmethod VELOVI.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- VELOVI.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod VELOVI.setup_anndata(adata, spliced_layer, unspliced_layer, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- Parameters:
- Return type:
- Returns:
None. Adds the following fields:
- .uns[‘_scvi’]
scvi setup dictionary
- .obs[‘_scvi_labels’]
labels encoded as integers
- .obs[‘_scvi_batch’]
batch encoded as integers
- VELOVI.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- VELOVI.train(max_epochs=500, lr=0.01, weight_decay=0.01, accelerator='auto', devices='auto', train_size=0.9, validation_size=None, batch_size=256, early_stopping=True, gradient_clip_val=10, plan_kwargs=None, external_indexing=None, **trainer_kwargs)[source]#
Train the model.
- Parameters:
max_epochs (
int
|None
(default:500
)) – Number of passes through the dataset. IfNone
, defaults to np.min([round((20000 / n_cells) * 400), 400])lr (
float
(default:0.01
)) – Learning rate for optimization.weight_decay (
float
(default:0.01
)) – Weight decay for optimization.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.train_size (
float
(default:0.9
)) – Size of training set in the range[0.0, 1.0]
.validation_size (
float
|None
(default:None
)) – Size of the test set. IfNone
, defaults to1 - train_size
. Iftrain_size + validation_size < 1
, the remaining cells belong to a test set.batch_size (
int
(default:256
)) – Minibatch size to use during training.early_stopping (
bool
(default:True
)) – Perform early stopping. Additional arguments can be passed in**kwargs
. SeeTrainer
for further options.gradient_clip_val (
float
(default:10
)) – Value for gradient clipping.plan_kwargs (
dict
|None
(default:None
)) – Keyword args forTrainingPlan
. Keyword arguments passed to this method will overwrite values present inplan_kwargs
, when appropriate.external_indexing (
list
[ndarray
] (default:None
)) – A list of data split indices in the order of training, validation, and test sets. Validation and test set are not required and can be left empty.**trainer_kwargs – Other keyword args for
Trainer
.