scvi.distributions.Poisson#

class scvi.distributions.Poisson(rate, validate_args=None, scale=None)[source]#

Poisson distribution.

Parameters:
  • rate (Tensor) – rate of the Poisson distribution.

  • validate_args (bool | None (default: None)) – whether to validate input.

  • scale (Tensor (default: None)) – Normalized mean expression of the distribution. This optional parameter is not used in any computations, but allows to store normalization expression levels.

Attributes table#

arg_constraints

batch_shape

Returns the shape over which parameters are batched.

event_shape

Returns the shape of a single sample (without batching).

has_enumerate_support

has_rsample

mean

Returns the mean of the distribution.

mode

Returns the mode of the distribution.

stddev

Returns the standard deviation of the distribution.

support

variance

Returns the variance of the distribution.

Methods table#

cdf(value)

Returns the cumulative density/mass function evaluated at value.

entropy()

Method to compute the entropy using Bregman divergence of the log normalizer.

enumerate_support([expand])

Returns tensor containing all values supported by a discrete distribution.

expand(batch_shape[, _instance])

Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape.

get_normalized(key)

icdf(value)

Returns the inverse cumulative density/mass function evaluated at value.

log_prob(value)

Returns the log of the probability density/mass function evaluated at value.

perplexity()

Returns perplexity of distribution, batched over batch_shape.

rsample([sample_shape])

Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched.

sample([sample_shape])

Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched.

sample_n(n)

Generates n samples or n batches of samples if the distribution parameters are batched.

set_default_validate_args(value)

Sets whether validation is enabled or disabled.

Attributes#

Poisson.arg_constraints = {'rate': GreaterThanEq(lower_bound=0.0)}#
Poisson.batch_shape[source]#

Returns the shape over which parameters are batched.

Poisson.event_shape[source]#

Returns the shape of a single sample (without batching).

Poisson.has_enumerate_support = False#
Poisson.has_rsample = False#
Poisson.mean[source]#
Poisson.mode[source]#
Poisson.stddev[source]#

Returns the standard deviation of the distribution.

Poisson.support = IntegerGreaterThan(lower_bound=0)#
Poisson.variance[source]#

Methods#

Poisson.cdf(value)[source]#

Returns the cumulative density/mass function evaluated at value.

Parameters:

value (Tensor)

Return type:

Tensor

Poisson.entropy()[source]#

Method to compute the entropy using Bregman divergence of the log normalizer.

Poisson.enumerate_support(expand=True)[source]#

Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be (cardinality,) + batch_shape + event_shape (where event_shape = () for univariate distributions).

Note that this enumerates over all batched tensors in lock-step [[0, 0], [1, 1], …]. With expand=False, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, [[0], [1], ...

To iterate over the full Cartesian product use itertools.product(m.enumerate_support()).

Parameters:

expand (bool) – whether to expand the support over the batch dims to match the distribution’s batch_shape.

Return type:

Tensor

Returns:

Tensor iterating over dimension 0.

Poisson.expand(batch_shape, _instance=None)[source]#

Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. This method calls expand on the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in __init__.py, when an instance is first created.

Parameters:
  • batch_shape (torch.Size) – the desired expanded size.

  • _instance (default: None) – new instance provided by subclasses that need to override .expand.

Returns:

New distribution instance with batch dimensions expanded to batch_size.

Poisson.get_normalized(key)[source]#
Return type:

Tensor

Poisson.icdf(value)[source]#

Returns the inverse cumulative density/mass function evaluated at value.

Parameters:

value (Tensor)

Return type:

Tensor

Poisson.log_prob(value)[source]#

Returns the log of the probability density/mass function evaluated at value.

Parameters:

value (Tensor)

Poisson.perplexity()[source]#

Returns perplexity of distribution, batched over batch_shape.

Return type:

Tensor

Returns:

Tensor of shape batch_shape.

Poisson.rsample(sample_shape=())[source]#

Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched.

Return type:

Tensor

Poisson.sample(sample_shape=())[source]#

Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched.

Poisson.sample_n(n)[source]#

Generates n samples or n batches of samples if the distribution parameters are batched.

Return type:

Tensor

static Poisson.set_default_validate_args(value)[source]#

Sets whether validation is enabled or disabled.

The default behavior mimics Python’s assert statement: validation is on by default, but is disabled if Python is run in optimized mode (via python -O). Validation may be expensive, so you may want to disable it once a model is working.

Parameters:

value (bool) – Whether to enable validation.

Return type:

None