scvi.module.TOTALVAE#
- class scvi.module.TOTALVAE(n_input_genes, n_input_proteins, n_batch=0, n_labels=0, n_hidden=256, n_latent=20, n_layers_encoder=2, n_layers_decoder=1, n_continuous_cov=0, n_cats_per_cov=None, dropout_rate_decoder=0.2, dropout_rate_encoder=0.2, gene_dispersion='gene', protein_dispersion='protein', log_variational=True, gene_likelihood='nb', latent_distribution='normal', protein_batch_mask=None, encode_covariates=True, protein_background_prior_mean=None, protein_background_prior_scale=None, use_size_factor_key=False, use_observed_lib_size=True, library_log_means=None, library_log_vars=None, use_batch_norm='both', use_layer_norm='none', extra_encoder_kwargs=None, extra_decoder_kwargs=None)[source]#
Bases:
BaseModuleClass
Total variational inference for CITE-seq data.
Implements the totalVI model of [Gayoso et al., 2021].
- Parameters:
n_input_genes (
int
) – Number of input genesn_input_proteins (
int
) – Number of input proteinsn_batch (
int
(default:0
)) – Number of batchesn_labels (
int
(default:0
)) – Number of labelsn_hidden (
int
(default:256
)) – Number of nodes per hidden layer for encoder and decodern_latent (
int
(default:20
)) – Dimensionality of the latent spacen_layers – Number of hidden layers used for encoder and decoder NNs
n_continuous_cov (
int
(default:0
)) – Number of continuous covaritesn_cats_per_cov (
Iterable
[int
] |None
(default:None
)) – Number of categories for each extra categorical covariatedropout_rate – Dropout rate for neural networks
gene_dispersion (
Literal
['gene'
,'gene-batch'
,'gene-label'
] (default:'gene'
)) –One of the following
'gene'
- genes_dispersion parameter of NB is constant per gene across cells'gene-batch'
- genes_dispersion can differ between different batches'gene-label'
- genes_dispersion can differ between different labels
protein_dispersion (
Literal
['protein'
,'protein-batch'
,'protein-label'
] (default:'protein'
)) –One of the following
'protein'
- protein_dispersion parameter is constant per protein across cells'protein-batch'
- protein_dispersion can differ between different batches NOT TESTED'protein-label'
- protein_dispersion can differ between different labels NOT TESTED
log_variational (
bool
(default:True
)) – Log(data+1) prior to encoding for numerical stability. Not normalization.gene_likelihood (
Literal
['zinb'
,'nb'
] (default:'nb'
)) –One of
'nb'
- Negative binomial distribution'zinb'
- Zero-inflated negative binomial distribution
latent_distribution (
Literal
['normal'
,'ln'
] (default:'normal'
)) –One of
'normal'
- Isotropic normal'ln'
- Logistic normal with normal params N(0, 1)
protein_batch_mask (
dict
[str
|int
,ndarray
] (default:None
)) – Dictionary where each key is a batch code, and value is for each protein, whether it was observed or not.encode_covariates (
bool
(default:True
)) – Whether to concatenate covariates to expression in encoderprotein_background_prior_mean (
ndarray
|None
(default:None
)) – Array of proteins by batches, the prior initialization for the protein background mean (log scale)protein_background_prior_scale (
ndarray
|None
(default:None
)) – Array of proteins by batches, the prior initialization for the protein background scale (log scale)use_size_factor_key (
bool
(default:False
)) – Use size_factor AnnDataField defined by the user as scaling factor in mean of conditional distribution. Takes priority over use_observed_lib_size.use_observed_lib_size (
bool
(default:True
)) – Use observed library size for RNA as scaling factor in mean of conditional distributionlibrary_log_means (
ndarray
|None
(default:None
)) – 1 x n_batch array of means of the log library sizes. Parameterizes prior on library size if not using observed library size.library_log_vars (
ndarray
|None
(default:None
)) – 1 x n_batch array of variances of the log library sizes. Parameterizes prior on library size if not using observed library size.use_batch_norm (
Literal
['encoder'
,'decoder'
,'none'
,'both'
] (default:'both'
)) – Whether to use batch norm in layers.use_layer_norm (
Literal
['encoder'
,'decoder'
,'none'
,'both'
] (default:'none'
)) – Whether to use layer norm in layers.extra_encoder_kwargs (
dict
|None
(default:None
)) – Extra keyword arguments passed intoEncoderTOTALVI
.extra_decoder_kwargs (
dict
|None
(default:None
)) – Extra keyword arguments passed intoDecoderTOTALVI
.
Attributes table#
Methods table#
|
Run the generative step. |
|
Compute reconstruction loss. |
|
Returns the tensors of dispersions for genes and proteins. |
|
Internal helper function to compute necessary inference quantities. |
|
Returns the reconstruction loss and the Kullback divergences. |
|
Computes the marginal log likelihood of the data under the model. |
|
Callback function run in |
|
Sample from the generative model. |
Attributes#
- TOTALVAE.training: bool#
Methods#
- TOTALVAE.generative(z, library_gene, batch_index, label, cont_covs=None, cat_covs=None, size_factor=None, transform_batch=None)[source]#
Run the generative step.
- TOTALVAE.get_reconstruction_loss(x, y, px_dict, py_dict, pro_batch_mask_minibatch=None)[source]#
Compute reconstruction loss.
- Return type:
tuple
[Tensor
,Tensor
]
- TOTALVAE.get_sample_dispersion(x, y, batch_index=None, label=None, n_samples=1)[source]#
Returns the tensors of dispersions for genes and proteins.
- Parameters:
x (
Tensor
) – tensor of values with shape(batch_size, n_input_genes)
y (
Tensor
) – tensor of values with shape(batch_size, n_input_proteins)
batch_index (
Tensor
|None
(default:None
)) – array that indicates which batch the cells belong to with shapebatch_size
label (
Tensor
|None
(default:None
)) – tensor of cell-types labels with shape(batch_size, n_labels)
n_samples (
int
(default:1
)) – number of samples
- Return type:
tuple
[Tensor
,Tensor
]- Returns:
type tensors of dispersions of the negative binomial distribution
- TOTALVAE.inference(x, y, batch_index=None, label=None, n_samples=1, cont_covs=None, cat_covs=None)[source]#
Internal helper function to compute necessary inference quantities.
We use the dictionary
px_
to contain the parameters of the ZINB/NB for genes. The rate refers to the mean of the NB, dropout refers to Bernoulli mixing parameters. scale refers to the quanity upon which differential expression is performed. For genes, this can be viewed as the mean of the underlying gamma distribution.We use the dictionary
py_
to contain the parameters of the Mixture NB distribution for proteins. rate_fore refers to foreground mean, while rate_back refers to background mean.scale
refers to foreground mean adjusted for background probability and scaled to reside in simplex.back_alpha
andback_beta
are the posterior parameters forrate_back
.fore_scale
is the scaling factor that enforces rate_fore > rate_back.px_["r"]
andpy_["r"]
are the inverse dispersion parameters for genes and protein, respectively.- Parameters:
x (
Tensor
) – tensor of values with shape(batch_size, n_input_genes)
y (
Tensor
) – tensor of values with shape(batch_size, n_input_proteins)
batch_index (
Tensor
|None
(default:None
)) – array that indicates which batch the cells belong to with shapebatch_size
label (
Tensor
|None
(default:None
)) – tensor of cell-types labels with shape (batch_size, n_labels)n_samples (default:
1
) – Number of samples to sample from approximate posteriorcont_covs (default:
None
) – Continuous covariates to condition oncat_covs (default:
None
) – Categorical covariates to condition on
- Return type:
- TOTALVAE.loss(tensors, inference_outputs, generative_outputs, pro_recons_weight=1.0, kl_weight=1.0)[source]#
Returns the reconstruction loss and the Kullback divergences.
- Parameters:
x – tensor of values with shape
(batch_size, n_input_genes)
y – tensor of values with shape
(batch_size, n_input_proteins)
batch_index – array that indicates which batch the cells belong to with shape
batch_size
label – tensor of cell-types labels with shape (batch_size, n_labels)
- Return type:
tuple
[FloatTensor
,FloatTensor
,FloatTensor
,FloatTensor
]- Returns:
type the reconstruction loss and the Kullback divergences