Model hyperparameter tuning with scVI#
Warning
scvi.autotune
development is still in progress. The API is subject to change.
Finding an effective set of model hyperparameters (e.g. learning rate, number of hidden layers, etc.) is an important component in training a model as its performance can be highly dependent on these non-trainable parameters. Manually tuning a model often involves picking a set of hyperparameters to search over and then evaluating different configurations over a validation set for a desired metric. This process can be time consuming and can require some prior intuition about a model and dataset pair, which is not always feasible.
In this tutorial, we show how to use scvi
’s autotune
module, which allows us to automatically find a good set of model hyperparameters using Ray Tune. We will use SCVI
and a subsample of the heart cell atlas for the task of batch correction, but the principles outlined here can be applied to any model and dataset. In particular, we will go through the following steps:
Installing required packages
Loading and preprocessing the dataset
Defining the tuner and discovering hyperparameters
Running the tuner
Comparing latent spaces
Optional: Monitoring progress with Tensorboard
Optional: Tuning over integration metrics with
scib-metrics
Installing required packages#
Note
Running the following cell will install tutorial dependencies on Google Colab only. It will have no effect on environments other than Google Colab.
!pip install --quiet scvi-colab
from scvi_colab import install
install()
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
import tempfile
import ray
import scanpy as sc
import scvi
import seaborn as sns
import torch
from ray import tune
from scvi import autotune
scvi.settings.seed = 0
print("Last run with scvi-tools version:", scvi.__version__)
Last run with scvi-tools version: 1.2.0
Note
You can modify save_dir
below to change where the data files for this tutorial are saved.
sc.set_figure_params(figsize=(6, 6), frameon=False)
sns.set_theme()
torch.set_float32_matmul_precision("high")
save_dir = tempfile.TemporaryDirectory()
scvi.settings.logging_dir = save_dir.name
%config InlineBackend.print_figure_kwargs={"facecolor": "w"}
%config InlineBackend.figure_format="retina"
Loading and preprocessing the dataset#
adata = scvi.data.heart_cell_atlas_subsampled(save_path=save_dir.name)
adata
INFO Downloading file at /tmp/tmpyoqxn2or/hca_subsampled_20k.h5ad
AnnData object with n_obs × n_vars = 18641 × 26662
obs: 'NRP', 'age_group', 'cell_source', 'cell_type', 'donor', 'gender', 'n_counts', 'n_genes', 'percent_mito', 'percent_ribo', 'region', 'sample', 'scrublet_score', 'source', 'type', 'version', 'cell_states', 'Used'
var: 'gene_ids-Harvard-Nuclei', 'feature_types-Harvard-Nuclei', 'gene_ids-Sanger-Nuclei', 'feature_types-Sanger-Nuclei', 'gene_ids-Sanger-Cells', 'feature_types-Sanger-Cells', 'gene_ids-Sanger-CD45', 'feature_types-Sanger-CD45', 'n_counts'
uns: 'cell_type_colors'
The only preprocessing step we will perform in this case will be to subsample the dataset for 2000 highly variable genes using scanpy
for faster model training.
sc.pp.highly_variable_genes(adata, n_top_genes=2000, flavor="seurat_v3", subset=True)
adata
AnnData object with n_obs × n_vars = 18641 × 2000
obs: 'NRP', 'age_group', 'cell_source', 'cell_type', 'donor', 'gender', 'n_counts', 'n_genes', 'percent_mito', 'percent_ribo', 'region', 'sample', 'scrublet_score', 'source', 'type', 'version', 'cell_states', 'Used'
var: 'gene_ids-Harvard-Nuclei', 'feature_types-Harvard-Nuclei', 'gene_ids-Sanger-Nuclei', 'feature_types-Sanger-Nuclei', 'gene_ids-Sanger-Cells', 'feature_types-Sanger-Cells', 'gene_ids-Sanger-CD45', 'feature_types-Sanger-CD45', 'n_counts', 'highly_variable', 'highly_variable_rank', 'means', 'variances', 'variances_norm'
uns: 'cell_type_colors', 'hvg'
Defining the tuner and discovering hyperparameters#
The first part of our workflow is the same as the standard scvi-tools
workflow: we start with our desired model class, and we register our dataset with it using setup_anndata
. All datasets must be registered prior to hyperparameter tuning.
model_cls = scvi.model.SCVI
model_cls.setup_anndata(adata)
Our main entry point to the autotune
module is the ModelTuner
class, a wrapper around ray.tune.Tuner
with additional functionality specific to scvi-tools
. We can define a new ModelTuner
by providing it with our model class.
ModelTuner
will register all tunable hyperparameters in SCVI
– these can be viewed by calling info()
. By default, this method will display three tables:
Tunable hyperparameters: The names of hyperparameters that can be tuned, their default values, and the internal classes they are defined in.
Available metrics: The metrics that can be used to evaluate the performance of the model. One of these must be provided when running the tuner.
Default search space: The default search space for the model class, which will be used if no search space is provided by the user.
Running the tuner#
Now that we know what hyperparameters are available to us, we can define a search space using the search space API in ray.tune
. For this tutorial, we choose a simple search space with two model hyperparameters and one training plan hyperparameter. These can all be combined into a single dictionary that we pass into the fit
method.
search_space = {
"model_params": {"n_hidden": tune.choice([64, 128, 256]), "n_layers": tune.choice([1, 2, 3])},
"train_params": {"max_epochs": 100},
}
There are a couple more arguments we should be aware of before fitting the tuner:
num_samples
: The total number of hyperparameter sets to sample fromsearch_space
. This is the total number of models that will be trained.For example, if we set
num_samples=2
, we might sample two models with the following hyperparameter configurations:model1 = { "n_hidden": 64, "n_layers": 1, "lr": 0.001, } model2 = { "n_hidden": 64, "n_layers": 3, "lr": 0.0001, }
max_epochs
: The maximum number of epochs to train each model for.Note: This does not mean that each model will be trained for
max_epochs
. Depending on the scheduler used, some trials are likely to be stopped early.resources
: A dictionary of maximum resources to allocate for the whole experiment. This allows us to run concurrent trials on limited hardware.
Now, we can call fit
on the tuner to start the hyperparameter sweep. This will return a TuneAnalysis
dataclass, which will contain the best set of hyperparameters, as well as other information.
ray.init(log_to_driver=False)
results = autotune.run_autotune(
model_cls,
data=adata,
mode="min",
metrics="validation_loss",
search_space=search_space,
num_samples=5,
resources={"cpu": 10, "gpu": 1},
)
Tune Status
Current time: | 2024-09-25 18:34:30 |
Running for: | 00:03:08.13 |
Memory: | 48.2/377.2 GiB |
System Info
Using AsyncHyperBand: num_stopped=5Bracket: Iter 64.000: -464.96080017089844 | Iter 32.000: -466.0521240234375 | Iter 16.000: -473.712646484375 | Iter 8.000: -483.68011474609375 | Iter 4.000: -496.39654541015625 | Iter 2.000: -519.4060668945312 | Iter 1.000: -590.464111328125
Logical resource usage: 10.0/64 CPUs, 1.0/1 GPUs (0.0/1.0 accelerator_type:RTX)
Trial Status
Trial name | status | loc | model_params/n_hidde n | model_params/n_layer s | train_params/max_epo chs | iter | total time (s) | validation_loss |
---|---|---|---|---|---|---|---|---|
_trainable_9374a187 | TERMINATED | 172.18.0.2:4315 | 128 | 2 | 100 | 100 | 70.7007 | 466.804 |
_trainable_812e8571 | TERMINATED | 172.18.0.2:4659 | 256 | 3 | 100 | 1 | 1.18005 | 592.308 |
_trainable_e010074a | TERMINATED | 172.18.0.2:4761 | 128 | 1 | 100 | 32 | 21.9276 | 467.729 |
_trainable_822e86d0 | TERMINATED | 172.18.0.2:4865 | 64 | 3 | 100 | 1 | 1.18251 | 638.6 |
_trainable_a3d3b6d5 | TERMINATED | 172.18.0.2:4967 | 256 | 2 | 100 | 100 | 71.0632 | 467.706 |
print(results.result_grid)
ResultGrid<[
Result(
metrics={'validation_loss': 466.8037414550781},
path='/tmp/tmpyoqxn2or/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/_trainable_9374a187_1_n_hidden=128,n_layers=2,max_epochs=100_2024-09-25_18-31-22',
filesystem='local',
checkpoint=None
),
Result(
metrics={'validation_loss': 592.308349609375},
path='/tmp/tmpyoqxn2or/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/_trainable_812e8571_2_n_hidden=256,n_layers=3,max_epochs=100_2024-09-25_18-31-26',
filesystem='local',
checkpoint=None
),
Result(
metrics={'validation_loss': 467.7285461425781},
path='/tmp/tmpyoqxn2or/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/_trainable_e010074a_3_n_hidden=128,n_layers=1,max_epochs=100_2024-09-25_18-32-41',
filesystem='local',
checkpoint=None
),
Result(
metrics={'validation_loss': 638.6004028320312},
path='/tmp/tmpyoqxn2or/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/_trainable_822e86d0_4_n_hidden=64,n_layers=3,max_epochs=100_2024-09-25_18-32-47',
filesystem='local',
checkpoint=None
),
Result(
metrics={'validation_loss': 467.7059020996094},
path='/tmp/tmpyoqxn2or/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/scvi_3dbf91d5-7e10-4b03-b882-9ace7843f033/_trainable_a3d3b6d5_5_n_hidden=256,n_layers=2,max_epochs=100_2024-09-25_18-33-13',
filesystem='local',
checkpoint=None
)
]>
Comparing latent spaces#
Work in progress: please check back in the next release!
Optional: Monitoring progress with Tensorboard#
Work in progress: please check back in the next release!
Optional: Tuning over integration metrics with scib-metrics
#
Work in progress: please check back in the next release!