scvi.external.Decipher#
- class scvi.external.Decipher(adata, **kwargs)[source]#
Decipher model for single-cell data analysis [Nazaret et al., 2023].
- Parameters:
adata (
AnnData
) – AnnData object that has been registered viasetup_anndata()
.dim_v – Dimension of the interpretable latent space v.
dim_z – Dimension of the intermediate latent space z.
layers_v_to_z – Hidden layer sizes for the v to z decoder network.
layers_z_to_x – Hidden layer sizes for the z to x decoder network.
beta – Regularization parameter for the KL divergence.
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Compute the decipher time for each cell, based on the inferred trajectories. |
|
Compute the gene patterns for a trajectory. |
|
Impute gene expression from the decipher model. |
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
Retrieves the |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Get the latent representation of the data. |
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Train the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
Methods#
- static Decipher.compute_decipher_time(adata, cluster_obs_key, trajectory, n_neighbors=10)[source]#
Compute the decipher time for each cell, based on the inferred trajectories.
The decipher time is computed by KNN regression of the cells’ decipher v on the trajectories.
- Parameters:
- Return type:
- Returns:
The decipher time of each cell.
- Decipher.compute_gene_patterns(adata, trajectory, l_scale=10000, n_samples=100)[source]#
Compute the gene patterns for a trajectory.
The trajectory’s points are sent through the decoders, thus defining distributions over the gene expression. The gene patterns are computed by sampling from these distribution.
- Parameters:
- Return type:
- Returns:
The gene patterns for the trajectory. Dictionary keys:
mean: the mean gene expression pattern
q25: the 25% quantile of the gene expression pattern
q75: the 75% quantile of the gene expression pattern
times: the times of the trajectory
- Decipher.compute_imputed_gene_expression(adata=None, indices=None, batch_size=None, compute_covariances=False, v_obsm_key=None, z_obsm_key=None)[source]#
Impute gene expression from the decipher model.
- Parameters:
adata (
AnnData
|None
(default:None
)) – The annotated data matrix.indices (
Sequence
[int
] |None
(default:None
)) – Indices of the data to get the latent representation of.batch_size (
int
|None
(default:None
)) – Batch size to use for the data loader.compute_covariances (
bool
(default:False
)) – Whether to compute the covariances between the Decipher v and each gene.v_obsm_key (
str
|None
(default:None
)) – Key in adata.obsm to use for the Decipher v. Required if compute_covariances is True.z_obsm_key (
str
|None
(default:None
)) – Key in adata.obsm to use for the Decipher z. Required if compute_covariances is True.
- Return type:
- Returns:
The imputed gene expression, and the covariances between the Decipher v and each gene if compute_covariances is True.
- classmethod Decipher.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- Decipher.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- Decipher.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- Decipher.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- Decipher.get_latent_representation(adata=None, indices=None, batch_size=None, give_z=False)[source]#
Get the latent representation of the data.
- Parameters:
adata (
AnnData
|None
(default:None
)) – AnnData object with the data to get the latent representation of.indices (
Sequence
[int
] |None
(default:None
)) – Indices of the data to get the latent representation of.batch_size (
int
|None
(default:None
)) – Batch size to use for the data loader.give_z (
bool
(default:False
)) – Whether to return the intermediate latent space z or the top-level latent space v.
- Return type:
- classmethod Decipher.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static Decipher.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- classmethod Decipher.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- Decipher.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod Decipher.setup_anndata(adata, layer=None, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- Decipher.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- Decipher.train(max_epochs=None, accelerator='auto', device='auto', train_size=0.9, validation_size=None, shuffle_set_split=True, batch_size=128, early_stopping=False, training_plan=None, datasplitter_kwargs=None, plan_kwargs=None, **trainer_kwargs)[source]#
Train the model.
- Parameters:
max_epochs (
int
|None
(default:None
)) – Number of passes through the dataset. If None, defaults to np.min([round((20000 / n_cells) * 400), 400])accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.train_size (
float
(default:0.9
)) – Size of training set in the range [0.0, 1.0].validation_size (
float
|None
(default:None
)) – Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. If False, the val, train, and test set are split in the sequential order of the data according to validation_size and train_size percentages.batch_size (
int
(default:128
)) – Minibatch size to use during training. If None, no minibatching occurs and all data is copied to device (e.g., GPU).early_stopping (
bool
(default:False
)) – Perform early stopping. Additional arguments can be passed in **kwargs. SeeTrainer
for further options.lr – Optimiser learning rate (default optimiser is
ClippedAdam
). Specifying optimiser via plan_kwargs overrides this choice of lr.training_plan (
PyroTrainingPlan
|None
(default:None
)) – Training planPyroTrainingPlan
.datasplitter_kwargs (
dict
|None
(default:None
)) – Additional keyword arguments passed intoDataSplitter
.plan_kwargs (
dict
|None
(default:None
)) – Keyword args forPyroTrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.**trainer_kwargs – Other keyword args for
Trainer
.