scvi.distributions.NegativeBinomialMixture#
- class scvi.distributions.NegativeBinomialMixture(mu1, mu2, theta1, mixture_logits, theta2=None, validate_args=False)[source]#
Negative binomial mixture distribution.
See
NegativeBinomial
for further description of parameters.- Parameters:
mu1 (
Tensor
) – Mean of the component 1 distribution.mu2 (
Tensor
) – Mean of the component 2 distribution.theta1 (
Tensor
) – Inverse dispersion for component 1.mixture_logits (
Tensor
) – Logits scale probability of belonging to component 1.theta2 (
Tensor
(default:None
)) – Inverse dispersion for component 1. If None, assumed to be equal to theta1.validate_args (
bool
(default:False
)) – Raise ValueError if arguments do not match constraints
Attributes table#
Returns the shape over which parameters are batched. |
|
Returns the shape of a single sample (without batching). |
|
Returns the mean of the distribution. |
|
Returns the mode of the distribution. |
|
Returns the standard deviation of the distribution. |
|
Returns the variance of the distribution. |
Methods table#
|
Returns the cumulative density/mass function evaluated at value. |
|
Returns entropy of distribution, batched over batch_shape. |
|
Returns tensor containing all values supported by a discrete distribution. |
|
Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. |
|
|
|
Returns the inverse cumulative density/mass function evaluated at value. |
|
Log probability. |
Returns perplexity of distribution, batched over batch_shape. |
|
|
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. |
|
Sample from the distribution. |
|
Generates n samples or n batches of samples if the distribution parameters are batched. |
|
Sets whether validation is enabled or disabled. |
Attributes#
- NegativeBinomialMixture.arg_constraints = {'mixture_logits': Real(), 'mixture_probs': HalfOpenInterval(lower_bound=0.0, upper_bound=1.0), 'mu1': GreaterThanEq(lower_bound=0), 'mu2': GreaterThanEq(lower_bound=0), 'theta1': GreaterThanEq(lower_bound=0)}#
- NegativeBinomialMixture.event_shape[source]#
Returns the shape of a single sample (without batching).
- NegativeBinomialMixture.has_enumerate_support = False#
- NegativeBinomialMixture.has_rsample = False#
- NegativeBinomialMixture.support = IntegerGreaterThan(lower_bound=0)#
Methods#
- NegativeBinomialMixture.cdf(value)[source]#
Returns the cumulative density/mass function evaluated at value.
- Parameters:
value (Tensor)
- Return type:
Tensor
- NegativeBinomialMixture.entropy()[source]#
Returns entropy of distribution, batched over batch_shape.
- Return type:
Tensor
- Returns:
Tensor of shape batch_shape.
- NegativeBinomialMixture.enumerate_support(expand=True)[source]#
Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be (cardinality,) + batch_shape + event_shape (where event_shape = () for univariate distributions).
Note that this enumerates over all batched tensors in lock-step [[0, 0], [1, 1], …]. With expand=False, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, [[0], [1], ...
To iterate over the full Cartesian product use itertools.product(m.enumerate_support()).
- Parameters:
expand (bool) – whether to expand the support over the batch dims to match the distribution’s batch_shape.
- Return type:
Tensor
- Returns:
Tensor iterating over dimension 0.
- NegativeBinomialMixture.expand(batch_shape, _instance=None)[source]#
Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to batch_shape. This method calls
expand
on the distribution’s parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in __init__.py, when an instance is first created.- Parameters:
batch_shape (torch.Size) – the desired expanded size.
_instance (default:
None
) – new instance provided by subclasses that need to override .expand.
- Returns:
New distribution instance with batch dimensions expanded to batch_size.
- NegativeBinomialMixture.icdf(value)[source]#
Returns the inverse cumulative density/mass function evaluated at value.
- Parameters:
value (Tensor)
- Return type:
Tensor
- NegativeBinomialMixture.perplexity()[source]#
Returns perplexity of distribution, batched over batch_shape.
- Return type:
Tensor
- Returns:
Tensor of shape batch_shape.
- NegativeBinomialMixture.rsample(sample_shape=())[source]#
Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched.
- Return type:
Tensor
- NegativeBinomialMixture.sample(sample_shape=None)[source]#
Sample from the distribution.
- Return type:
Tensor
- NegativeBinomialMixture.sample_n(n)[source]#
Generates n samples or n batches of samples if the distribution parameters are batched.
- Return type:
Tensor
- static NegativeBinomialMixture.set_default_validate_args(value)[source]#
Sets whether validation is enabled or disabled.
The default behavior mimics Python’s
assert
statement: validation is on by default, but is disabled if Python is run in optimized mode (viapython -O
). Validation may be expensive, so you may want to disable it once a model is working.