scvi.external.resolvi.RESOLVAE#
- class scvi.external.resolvi.RESOLVAE(n_input, n_obs, n_neighbors, expression_anntorchdata, n_batch=0, n_hidden=32, n_hidden_encoder=128, n_latent=10, mixture_k=30, n_layers=2, n_cats_per_cov=None, n_labels=None, dropout_rate=0.05, dispersion='gene', gene_likelihood='nb', semisupervised=False, encode_covariates=False, deeply_inject_covariates=True, use_batch_norm='none', use_layer_norm='both', var_activation=None, classifier_parameters=None, prior_true_amount=1.0, prior_diffusion_amount=0.3, sparsity_diffusion=3.0, background_ratio=0.1, prior_proportions_rate=10.0, median_distance=1.0, downsample_counts_mean=None, downsample_counts_std=1.0, diffusion_eps=0.01, latent_distribution=None)[source]#
Bases:
PyroBaseModuleClass
Implementation of resolVI.
- Parameters:
n_input (
int
) – Number of input genesn_obs (
int
) – Number of total input cellsn_neighbors (
int
) – Number of spatial neighbors to consider for diffusion.expression_anntorchdata (
AnnTorchDataset
) – AnnTorchDataset with expression data.n_batch (
int
(default:0
)) – Number of batches, if 0, no batch correction is performed.n_hidden (
int
(default:32
)) – Number of nodes per hidden layer in the decodern_hidden_encoder (
int
(default:128
)) – Number of nodes per hidden layer in the encodern_latent (
int
(default:10
)) – Dimensionality of the latent spacemixture_k (
int
(default:30
)) – Number of components in the Mixture-of-Gaussian priorn_layers (
int
(default:2
)) – Number of hidden layers used for encoder and decoder NNsn_cats_per_cov (
Iterable
[int
] |None
(default:None
)) – Number of categories for each extra categorical covariaten_labels (
Iterable
[int
] |None
(default:None
)) – Number of cell-type labels in the datasetdropout_rate (
float
(default:0.05
)) – Dropout rate for neural networksdispersion (
Literal
['gene'
,'gene-batch'
] (default:'gene'
)) –One of the following
'gene'
- dispersion parameter of NB is constant per gene across cells'gene-batch'
- dispersion can differ between different batches
gene_likelihood (
Literal
['nb'
,'poisson'
] (default:'nb'
)) – One of *'nb'
- Negative binomial distribution *'poisson'
- Poisson distributionsemi_supervised – Whether to use a semi-supervised model
encode_covariates (
bool
(default:False
)) – Whether to concatenate covariates to expression in encoderdeeply_inject_covariates (
bool
(default:True
)) – Whether to concatenate covariates into output of hidden layers in encoder/decoder. This option only applies when n_layers > 1. The covariates are concatenated to the input of subsequent hidden layers.use_batch_norm (
Literal
['encoder'
,'decoder'
,'none'
,'both'
] (default:'none'
)) – Whether to use batch norm in layersuse_layer_norm (
Literal
['encoder'
,'decoder'
,'none'
,'both'
] (default:'both'
)) – Whether to use layer norm in layersvar_activation (
Callable
|None
(default:None
)) – Callable used to ensure positivity of the variational distributions’ variance. When None, defaults to torch.exp.classifier_parameters (
dict
|None
(default:None
)) – Parameters for the classifierprior_true_amount (
float
(default:1.0
)) – Prior for true_proportion. Equals Gamma(prior_proportions_rate, prior_proportions_rate/prior_true_amount) Default is 1.0prior_diffusion_amount (
float
(default:0.3
)) – Prior for diffusion_proportion. Equals Gamma(prior_proportions_rate, prior_proportions_rate/prior_diffusion_amount) Default is 0.3sparsity_diffusion (
float
(default:3.0
)) – Prior for sparsity_diffusion. Controls the concentration of the Dirichlet distribution. Equals Gamma(prior_proportions_rate, prior_proportions_rate/sparsity_diffusion) Default is 3.0background_ratio (
float
(default:0.1
)) –Prior for background_proportion Equals Gamma(prior_proportions_rate,
prior_proportions_rate/(10*background_ratio*prior_true_amount))
Default is 0.1
prior_proportions_rate (
float
(default:10.0
)) – Rate parameter for the prior proportions.median_distance (
float
(default:1.0
)) – Kernel size in the RBF kernel to estimate distances between cells and neighbors.downsample_counts_mean (
float
|None
(default:None
)) – Mean of the log-normal distribution used to downsample counts.downsample_counts_std (
float
(default:1.0
)) – Standard deviation of the log-normal distribution used to downsample counts.diffusion_eps (
float
(default:0.01
)) – Epsilon value for diffusion. Creates an offset to stabilize training.encode_covariates – Whether to concatenate covariates to expression in encoder
latent_distribution (
str
|None
(default:None
)) – Placeholder for compatibility with other models.
Attributes table#
Simplified plates adopted from Cell2location. |
|
Methods table#
Attributes#
- RESOLVAE.list_obs_plate_vars[source]#
Simplified plates adopted from Cell2location.
“name” - the name of observation/minibatch plate;
“event_dim” - the number of event dimensions.
- RESOLVAE.training: bool#