scvi.module.base.SupervisedModuleClass#
- class scvi.module.base.SupervisedModuleClass[source]#
Bases:
object
General purpose supervised classify and loss calculations methods.
Methods table#
|
|
|
Forward pass through the encoder and classifier. |
|
Methods#
- SupervisedModuleClass.classification_loss(labelled_dataset)[source]#
- Return type:
tuple
[Tensor
,Tensor
,Tensor
]
- SupervisedModuleClass.classify(x, batch_index=None, cont_covs=None, cat_covs=None, use_posterior_mean=True)[source]#
Forward pass through the encoder and classifier.
- Parameters:
x (
Tensor
) – Tensor of shape(n_obs, n_vars)
.batch_index (
Tensor
|None
(default:None
)) – Tensor of shape(n_obs,)
denoting batch indices.cont_covs (
Tensor
|None
(default:None
)) – Tensor of shape(n_obs, n_continuous_covariates)
.cat_covs (
Tensor
|None
(default:None
)) – Tensor of shape(n_obs, n_categorical_covariates)
.use_posterior_mean (
bool
(default:True
)) – Whether to use the posterior mean of the latent distribution for classification.
- Return type:
Tensor
- Returns:
Tensor of shape
(n_obs, n_labels)
denoting logit scores per label. Before v1.1, this method by default returned probabilities per label, see #2301 for more details.