scvi.external.Tangram#
- class scvi.external.Tangram(sc_adata, constrained=False, target_count=None, **model_kwargs)[source]#
Reimplementation of Tangram [Biancalani et al., 2021].
Maps single-cell RNA-seq data to spatial data. Original implementation: broadinstitute/Tangram.
Currently the “cells” and “constrained” modes are implemented.
- Parameters:
mdata – MuData object that has been registered via
setup_mudata()
.constrained (
bool
(default:False
)) – Whether to use the constrained version of Tangram instead of cells mode.target_count (
int
|None
(default:None
)) – The number of cells to be filtered. Necessary when constrained is True.**model_kwargs – Keyword args for
TangramMapper
Examples
>>> from scvi.external import Tangram >>> ad_sc = anndata.read_h5ad(path_to_sc_anndata) >>> ad_sp = anndata.read_h5ad(path_to_sp_anndata) >>> markers = pd.read_csv(path_to_markers, index_col=0) # genes to use for mapping >>> mdata = mudata.MuData( { "sp_full": ad_sp, "sc_full": ad_sc, "sp": ad_sp[:, markers].copy(), "sc": ad_sc[:, markers].copy() } ) >>> modalities = {"density_prior_key": "sp", "sc_layer": "sc", "sp_layer": "sp"} >>> Tangram.setup_mudata( mdata, density_prior_key="rna_count_based_density", modalities=modalities ) >>> tangram = Tangram(sc_adata) >>> tangram.train() >>> ad_sc.obsm["tangram_mapper"] = tangram.get_mapper_matrix() >>> ad_sp.obsm["tangram_cts"] = tangram.project_cell_annotations( ad_sc, ad_sp, ad_sc.obsm["tangram_mapper"], ad_sc.obs["labels"] ) >>> projected_ad_sp = tangram.project_genes(ad_sc, ad_sp, ad_sc.obsm["tangram_mapper"])
Notes
See further usage examples in the following tutorials:
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
What the get normalized functions name is |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
Retrieves the |
|
Returns the object in AnnData associated with the key in the data registry. |
Return the mapping matrix. |
|
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Project cell annotations to spatial data. |
|
Project gene expression to spatial data. |
|
Registers an |
|
Save the state of the model. |
Not implemented, use setup_mudata. |
|
|
Sets up the |
|
Move model to device. |
|
Train the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
Methods#
- classmethod Tangram.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- Tangram.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- Tangram.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- Tangram.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- Tangram.get_mapper_matrix()[source]#
Return the mapping matrix.
- Return type:
- Returns:
Mapping matrix of shape (n_obs_sp, n_obs_sc)
- classmethod Tangram.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static Tangram.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- static Tangram.project_cell_annotations(adata_sc, adata_sp, mapper, labels)[source]#
Project cell annotations to spatial data.
- Parameters:
- Return type:
- Returns:
Projected annotations as a
pd.DataFrame
with shape (n_sp, n_labels).
- static Tangram.project_genes(adata_sc, adata_sp, mapper)[source]#
Project gene expression to spatial data.
- Parameters:
- Return type:
- Returns:
anndata.AnnData
object with projected gene expression.
- classmethod Tangram.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- Tangram.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod Tangram.setup_mudata(mdata, density_prior_key='rna_count_based', sc_layer=None, sp_layer=None, modalities=None, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- Parameters:
mdata (
MuData
) – MuData with scRNA and spatial modalities.sc_layer (
str
|None
(default:None
)) – Layer key in scRNA modality to use for training.sp_layer (
str
|None
(default:None
)) – Layer key in spatial modality to use for training.density_prior_key (
Union
[str
,Literal
['rna_count_based'
,'uniform'
],None
] (default:'rna_count_based'
)) – Key in spatial modality obs for density prior.modalities (
dict
[str
,str
] |None
(default:None
)) – Mapping from setup_mudata param name to modality in mdata.
- Tangram.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- Tangram.train(max_epochs=1000, accelerator='auto', devices='auto', lr=0.1, plan_kwargs=None)[source]#
Train the model.
- Parameters:
max_epochs (
int
(default:1000
)) – Number of passes through the dataset.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.lr (
float
(default:0.1
)) – Optimiser learning rate (default optimiser isClippedAdam
). Specifying optimiser via plan_kwargs overrides this choice of lr.plan_kwargs (
dict
|None
(default:None
)) – Keyword args forJaxTrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.