scvi.external.SCBASSET#
- class scvi.external.SCBASSET(adata, n_bottleneck_layer=32, l2_reg_cell_embedding=0.0, **model_kwargs)[source]#
EXPERIMENTAL
Reimplementation of scBasset [Yuan and Kelley, 2022].Performs representation learning of scATAC-seq data. Original implementation: calico/scBasset.
We are working to measure the performance of this model compared to the original.
- Parameters:
adata (
AnnData
) – single-cell AnnData object that has been registered viasetup_anndata()
.n_bottleneck_layer (
int
(default:32
)) – Size of the bottleneck layerl2_reg_cell_embedding (
float
(default:0.0
)) – L2 regularization for the cell embedding layer. A value, e.g. 1e-8 can be used to improve integration performance.**model_kwargs – Keyword args for
ScBassetModule
Examples
>>> adata = anndata.read_h5ad(path_to_sc_anndata) >>> scvi.data.add_dna_sequence(adata) >>> adata = adata.transpose() # regions by cells >>> scvi.external.SCBASSET.setup_anndata(adata, dna_code_key="dna_code") >>> model = scvi.external.SCBASSET(adata) >>> model.train() >>> adata.varm["X_scbasset"] = model.get_latent_representation()
Notes
See further usage examples in the following tutorials:
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
What the get normalized functions name is |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
Retrieves the |
Returns the cell-specific bias term. |
|
|
Returns the object in AnnData associated with the key in the data registry. |
Returns the latent representation of the cells. |
|
|
Infer transcription factor activity using a motif injection procedure. |
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Train the model. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
- SCBASSET.DEFAULT_MOTIF_DIR = './scbasset_motifs/'#
- SCBASSET.MOTIF_URLS = {'human': ('https://storage.googleapis.com/scbasset_tutorial_data/Homo_sapiens_motif_fasta.tar.gz', 'Homo_sapiens_motif_fasta')}#
Methods#
- classmethod SCBASSET.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- SCBASSET.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- SCBASSET.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- SCBASSET.get_cell_bias()[source]#
Returns the cell-specific bias term.
- Return type:
- Returns:
bias (n_cells,)
- SCBASSET.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- SCBASSET.get_latent_representation()[source]#
Returns the latent representation of the cells.
- Return type:
- Returns:
latent representation (n_cells, n_latent)
- SCBASSET.get_tf_activity(tf, genome='human', motif_dir=None, lib_size_norm=True, batch_size=256)[source]#
Infer transcription factor activity using a motif injection procedure.
- Parameters:
tf (
str
) – transcription factor name. must be provided in the relevant motif repository.genome (
str
(default:'human'
)) – species name for the motif injection procedure. Currently, only “human” is supported.motif_dir (
str
|None
(default:None
)) – path for the motif library. Will download if not already present.lib_size_norm (
bool
|None
(default:True
)) – normalize accessibility scores for library size by substracting the cell bias term from each accessibility score prior to comparing motif scores to background scores.batch_size (
int
(default:256
)) – minibatch size for TF activity inference.
- Return type:
- Returns:
tf_score [cells,] TF activity scores.
Notes
scBasset infers TF activities by injecting known TF motifs into a shuffled dinucleotide sequence and computing the change in accessibility predicted between the injected motif and a randomized background sequence. See [Yuan and Kelley, 2022] for details. We modeled this function off the original implementation in scbasset.
- classmethod SCBASSET.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static SCBASSET.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- classmethod SCBASSET.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- SCBASSET.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod SCBASSET.setup_anndata(adata, dna_code_key, layer=None, batch_key=None, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- Parameters:
adata (
AnnData
) – AnnData object. Rows represent cells, columns represent features.dna_code_key (
str
) – Key in adata.obsm with dna sequences encoded as integer code.layer (
str
|None
(default:None
)) – if not None, uses this as the key in adata.layers for raw count data.batch_key (
str
|None
(default:None
)) – key in adata.var for batch information. Categories will automatically be converted into integer categories and saved to adata.var[‘_scvi_batch’]. If None, assigns the same batch to all the data.
Notes
The adata object should be in the regions by cells format. This is due to scBasset considering regions as observations and cells as variables. This can be simply achieved by transposing the data, bdata = adata.transpose().
- SCBASSET.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- SCBASSET.train(max_epochs=1000, lr=0.01, accelerator='auto', devices='auto', train_size=None, validation_size=None, shuffle_set_split=True, batch_size=128, early_stopping=True, early_stopping_monitor='auroc_train', early_stopping_mode='max', early_stopping_min_delta=1e-06, datasplitter_kwargs=None, plan_kwargs=None, **trainer_kwargs)[source]#
Train the model.
- Parameters:
max_epochs (
int
(default:1000
)) – Number of epochs to train forlr (
float
(default:0.01
)) – Learning rate for optimization.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.train_size (
float
|None
(default:None
)) – Size of training set in the range [0.0, 1.0].validation_size (
float
|None
(default:None
)) – Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. If False, the val, train, and test set are split in the sequential order of the data according to validation_size and train_size percentages.batch_size (
int
(default:128
)) – Minibatch size to use during training.early_stopping (
bool
(default:True
)) – Perform early stopping. Additional arguments can be passed in **kwargs. SeeTrainer
for further options.early_stopping_monitor (
str
(default:'auroc_train'
)) – Metric logged during validation set epoch. The available metrics will depend on the training plan class used. We list the most common options here in the typing.early_stopping_mode (
Literal
['min'
,'max'
] (default:'max'
)) – In ‘min’ mode, training will stop when the quantity monitored has stopped decreasing and in ‘max’ mode it will stop when the quantity monitored has stopped increasing.early_stopping_min_delta (
float
(default:1e-06
)) – Minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement.datasplitter_kwargs (
dict
|None
(default:None
)) – Additional keyword arguments passed intoDataSplitter
.plan_kwargs (
dict
|None
(default:None
)) – Keyword args forTrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.**trainer_kwargs – Other keyword args for
Trainer
.