scvi.model.base.UnsupervisedTrainingMixin#
Methods table#
|
Train the model. |
Methods#
- UnsupervisedTrainingMixin.train(max_epochs=None, accelerator='auto', devices='auto', train_size=0.9, validation_size=None, shuffle_set_split=True, load_sparse_tensor=False, batch_size=128, early_stopping=False, datasplitter_kwargs=None, plan_kwargs=None, **trainer_kwargs)[source]#
Train the model.
- Parameters
max_epochs (
Optional
[int
] (default:None
)) – Number of passes through the dataset. If None, defaults to np.min([round((20000 / n_cells) * 400), 400])accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.train_size (
float
(default:0.9
)) – Size of training set in the range [0.0, 1.0].validation_size (
Optional
[float
] (default:None
)) – Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. If False, the val, train, and test set are split in the sequential order of the data according to validation_size and train_size percentages.load_sparse_tensor (
bool
(default:False
)) – EXPERIMENTAL IfTrue
, loads data with sparse CSR or CSC layout as aTensor
with the same layout. Can lead to speedups in data transfers to GPUs, depending on the sparsity of the data.batch_size (
Tunable_
[int
] (default:128
)) – Minibatch size to use during training.early_stopping (
bool
(default:False
)) – Perform early stopping. Additional arguments can be passed in **kwargs. SeeTrainer
for further options.datasplitter_kwargs (
Optional
[dict
] (default:None
)) – Additional keyword arguments passed intoDataSplitter
.plan_kwargs (
Optional
[dict
] (default:None
)) – Keyword args forTrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.**trainer_kwargs – Other keyword args for
Trainer
.