scvi.model.DestVI#
- class scvi.model.DestVI(st_adata, cell_type_mapping, decoder_state_dict, px_decoder_state_dict, px_r, n_hidden, n_latent, n_layers, dropout_decoder, l1_reg, **module_kwargs)[source]#
Multi-resolution deconvolution of Spatial Transcriptomics data (DestVI) [Lopez et al., 2022].
Most users will use the alternate constructor (see example).
- Parameters:
st_adata (
AnnData
) – spatial transcriptomics AnnData object that has been registered viasetup_anndata()
.cell_type_mapping (
ndarray
) – mapping between numerals and cell type labelsdecoder_state_dict (
OrderedDict
) – state_dict from the decoder of the CondSCVI modelpx_decoder_state_dict (
OrderedDict
) – state_dict from the px_decoder of the CondSCVI modelpx_r (
ndarray
) – parameters for the px_r tensor in the CondSCVI modeln_hidden (
int
) – Number of nodes per hidden layer.n_latent (
int
) – Dimensionality of the latent space.n_layers (
int
) – Number of hidden layers used for encoder and decoder NNs.**module_kwargs – Keyword args for
MRDeconv
Examples
>>> sc_adata = anndata.read_h5ad(path_to_scRNA_anndata) >>> scvi.model.CondSCVI.setup_anndata(sc_adata) >>> sc_model = scvi.model.CondSCVI(sc_adata) >>> st_adata = anndata.read_h5ad(path_to_ST_anndata) >>> DestVI.setup_anndata(st_adata) >>> spatial_model = DestVI.from_rna_model(st_adata, sc_model) >>> spatial_model.train(max_epochs=2000) >>> st_adata.obsm["proportions"] = spatial_model.get_proportions(st_adata) >>> gamma = spatial_model.get_gamma(st_adata)
Notes
See further usage examples in the following tutorials:
Attributes table#
Data attached to model instance. |
|
Manager instance associated with self.adata. |
|
The current device that the module's params are on. |
|
Returns computed metrics during training. |
|
Whether the model has been trained. |
|
Summary string of the model. |
|
Observations that are in test set. |
|
Observations that are in train set. |
|
Observations that are in validation set. |
Methods table#
|
Converts a legacy saved model (<v0.15.0) to the updated save format. |
|
Deregisters the |
|
Alternate constructor for exploiting a pre-trained model on a RNA-seq dataset. |
|
Retrieves the |
|
Returns the object in AnnData associated with the key in the data registry. |
|
Returns the estimated cell-type specific latent space for the spatial data. |
|
Returns the estimated cell type proportion for the spatial data. |
|
Return the scaled parameter of the NB for every spot in queried cell types. |
|
Instantiate a model from the saved output. |
|
Return the full registry saved with the model. |
|
Registers an |
|
Save the state of the model. |
|
Sets up the |
|
Move model to device. |
|
Trains the model using MAP inference. |
|
Print summary of the setup for the initial AnnData or a given AnnData object. |
|
Print args used to setup a saved model. |
Attributes#
Methods#
- classmethod DestVI.convert_legacy_save(dir_path, output_dir_path, overwrite=False, prefix=None, **save_kwargs)[source]#
Converts a legacy saved model (<v0.15.0) to the updated save format.
- Parameters:
dir_path (
str
) – Path to directory where legacy model is saved.output_dir_path (
str
) – Path to save converted save files.overwrite (
bool
(default:False
)) – Overwrite existing data or not. IfFalse
and directory already exists atoutput_dir_path
, error will be raised.prefix (
str
|None
(default:None
)) – Prefix of saved file names.**save_kwargs – Keyword arguments passed into
save()
.
- Return type:
- DestVI.deregister_manager(adata=None)[source]#
Deregisters the
AnnDataManager
instance associated with adata.If adata is None, deregisters all
AnnDataManager
instances in both the class and instance-specific manager stores, except for the one associated with this model instance.
- classmethod DestVI.from_rna_model(st_adata, sc_model, vamp_prior_p=15, l1_reg=0.0, **module_kwargs)[source]#
Alternate constructor for exploiting a pre-trained model on a RNA-seq dataset.
- Parameters:
st_adata (
AnnData
) – registered anndata objectsc_model (
CondSCVI
) – trained CondSCVI modelvamp_prior_p (
int
(default:15
)) – number of mixture parameter for VampPrior calculationsl1_reg (
float
(default:0.0
)) – Scalar parameter indicating the strength of L1 regularization on cell type proportions. A value of 50 leads to sparser results.**model_kwargs – Keyword args for
DestVI
- DestVI.get_anndata_manager(adata, required=False)[source]#
Retrieves the
AnnDataManager
for a given AnnData object.Requires
self.id
has been set. Checks for anAnnDataManager
specific to this model instance.- Parameters:
- Return type:
- DestVI.get_from_registry(adata, registry_key)[source]#
Returns the object in AnnData associated with the key in the data registry.
AnnData object should be registered with the model prior to calling this function via the
self._validate_anndata
method.
- DestVI.get_gamma(indices=None, batch_size=None, return_numpy=False)[source]#
Returns the estimated cell-type specific latent space for the spatial data.
- Parameters:
indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. Only used if amortization. If None, all cells are used.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Only used if amortization. Defaults to scvi.settings.batch_size.return_numpy (
bool
(default:False
)) – if activated, will return a numpy array of shape is n_spots x n_latent x n_labels.
- Return type:
- DestVI.get_proportions(keep_noise=False, indices=None, batch_size=None)[source]#
Returns the estimated cell type proportion for the spatial data.
Shape is n_cells x n_labels OR n_cells x (n_labels + 1) if keep_noise.
- Parameters:
keep_noise (
bool
(default:False
)) – whether to account for the noise term as a standalone cell type in the proportion estimate.indices (
Sequence
[int
] |None
(default:None
)) – Indices of cells in adata to use. Only used if amortization. If None, all cells are used.batch_size (
int
|None
(default:None
)) – Minibatch size for data loading into model. Only used if amortization. Defaults to scvi.settings.batch_size.
- Return type:
- DestVI.get_scale_for_ct(label, indices=None, batch_size=None)[source]#
Return the scaled parameter of the NB for every spot in queried cell types.
- Parameters:
- Return type:
- Returns:
Pandas dataframe of gene_expression
- classmethod DestVI.load(dir_path, adata=None, accelerator='auto', device='auto', prefix=None, backup_url=None)[source]#
Instantiate a model from the saved output.
- Parameters:
dir_path (
str
) – Path to saved outputs.adata (
AnnData
|MuData
|None
(default:None
)) – AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved scvi setup dictionary. If None, will check for and load anndata saved with the model.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.device (
int
|str
(default:'auto'
)) – The device to use. Can be set to a non-negative index (int or str) or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then device will be set to the first available device.prefix (
str
|None
(default:None
)) – Prefix of saved file names.backup_url (
str
|None
(default:None
)) – URL to retrieve saved outputs from if not present on disk.
- Returns:
Model with loaded state dictionaries.
Examples
>>> model = ModelClass.load(save_path, adata) >>> model.get_....
- static DestVI.load_registry(dir_path, prefix=None)[source]#
Return the full registry saved with the model.
- classmethod DestVI.register_manager(adata_manager)[source]#
Registers an
AnnDataManager
instance with this model class.Stores the
AnnDataManager
reference in a class-specific manager store. Intended for use in thesetup_anndata()
class method followed up by retrieval of theAnnDataManager
via the_get_most_recent_anndata_manager()
method in the model init method.Notes
Subsequent calls to this method with an
AnnDataManager
instance referring to the same underlying AnnData object will overwrite the reference to previousAnnDataManager
.
- DestVI.save(dir_path, prefix=None, overwrite=False, save_anndata=False, save_kwargs=None, legacy_mudata_format=False, **anndata_write_kwargs)[source]#
Save the state of the model.
Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0.
- Parameters:
dir_path (
str
) – Path to a directory.prefix (
str
|None
(default:None
)) – Prefix to prepend to saved file names.overwrite (
bool
(default:False
)) – Overwrite existing data or not. If False and directory already exists at dir_path, error will be raised.save_anndata (
bool
(default:False
)) – If True, also saves the anndatasave_kwargs (
dict
|None
(default:None
)) – Keyword arguments passed intosave()
.legacy_mudata_format (
bool
(default:False
)) – IfTrue
, saves the modelvar_names
in the legacy format if the model was trained with aMuData
object. The legacy format is a flat array with variable names across all modalities concatenated, while the new format is a dictionary with keys corresponding to the modality names and values corresponding to the variable names for each modality.anndata_write_kwargs – Kwargs for
write()
- classmethod DestVI.setup_anndata(adata, layer=None, **kwargs)[source]#
Sets up the
AnnData
object for this model.A mapping will be created between data fields used by this model to their respective locations in adata. None of the data in adata are modified. Only adds fields to adata.
- DestVI.to_device(device)[source]#
Move model to device.
- Parameters:
device (
str
|int
) – Device to move model to. Options: ‘cpu’ for CPU, integer GPU index (eg. 0), or ‘cuda:X’ where X is the GPU index (eg. ‘cuda:0’). See torch.device for more info.
Examples
>>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device("cpu") # moves model to CPU >>> model.to_device("cuda:0") # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0
- DestVI.train(max_epochs=2000, lr=0.003, accelerator='auto', devices='auto', train_size=1.0, validation_size=None, shuffle_set_split=True, batch_size=128, n_epochs_kl_warmup=200, datasplitter_kwargs=None, plan_kwargs=None, **kwargs)[source]#
Trains the model using MAP inference.
- Parameters:
max_epochs (
int
(default:2000
)) – Number of epochs to train forlr (
float
(default:0.003
)) – Learning rate for optimization.accelerator (
str
(default:'auto'
)) – Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”) as well as custom accelerator instances.devices (
int
|list
[int
] |str
(default:'auto'
)) – The devices to use. Can be set to a non-negative index (int or str), a sequence of device indices (list or comma-separated str), the value -1 to indicate all available devices, or “auto” for automatic selection based on the chosen accelerator. If set to “auto” and accelerator is not determined to be “cpu”, then devices will be set to the first available device.train_size (
float
(default:1.0
)) – Size of training set in the range [0.0, 1.0].validation_size (
float
|None
(default:None
)) – Size of the test set. If None, defaults to 1 - train_size. If train_size + validation_size < 1, the remaining cells belong to a test set.shuffle_set_split (
bool
(default:True
)) – Whether to shuffle indices before splitting. If False, the val, train, and test set are split in the sequential order of the data according to validation_size and train_size percentages.batch_size (
int
(default:128
)) – Minibatch size to use during training.n_epochs_kl_warmup (
int
(default:200
)) – number of epochs needed to reach unit kl weight in the elbodatasplitter_kwargs (
dict
|None
(default:None
)) – Additional keyword arguments passed intoDataSplitter
.plan_kwargs (
dict
|None
(default:None
)) – Keyword args forTrainingPlan
. Keyword arguments passed to train() will overwrite values present in plan_kwargs, when appropriate.**kwargs – Other keyword args for
Trainer
.