scvi.nn.Decoder#
- class scvi.nn.Decoder(n_input, n_output, n_cat_list=None, n_layers=1, n_hidden=128, **kwargs)[source]#
Bases:
Module
Decodes data from latent space to data space.
n_input
dimensions ton_output
dimensions using a fully-connected neural network ofn_hidden
layers. Output is the mean and variance of a multivariate Gaussian- Parameters:
n_input (
int
) – The dimensionality of the input (latent space)n_output (
int
) – The dimensionality of the output (data space)n_cat_list (
Iterable
[int
] (default:None
)) – A list containing the number of categories for each category of interest. Each category will be included using a one-hot encodingn_layers (
int
(default:1
)) – The number of fully-connected hidden layersn_hidden (
int
(default:128
)) – The number of nodes per hidden layerdropout_rate – Dropout rate to apply to each of the hidden layers
kwargs – Keyword args for
FCLayers
Attributes table#
Methods table#
|
The forward computation for a single sample. |
Attributes#
- Decoder.training: bool#
Methods#
- Decoder.forward(x, *cat_list)[source]#
The forward computation for a single sample.
Decodes the data from the latent space using the decoder network
Returns tensors for the mean and variance of a multivariate distribution
- Parameters:
x (
Tensor
) – tensor with shape(n_input,)
cat_list (
int
) – list of category membership(s) for this sample
- Returns:
2-tuple of
torch.Tensor
Mean and variance tensors of shape(n_output,)