scvi.module.PEAKVAE#
- class scvi.module.PEAKVAE(n_input_regions, n_batch=0, n_hidden=None, n_latent=None, n_layers_encoder=2, n_layers_decoder=2, n_continuous_cov=0, n_cats_per_cov=None, dropout_rate=0.1, model_depth=True, region_factors=True, use_batch_norm='none', use_layer_norm='both', latent_distribution='normal', deeply_inject_covariates=False, encode_covariates=False, extra_encoder_kwargs=None, extra_decoder_kwargs=None)[source]#
Bases:
BaseModuleClass
Variational auto-encoder model for ATAC-seq data.
This is an implementation of the peakVI model descibed in.
- Parameters:
n_input_regions (
int
) – Number of input regions.n_batch (
int
(default:0
)) – Number of batches, if 0, no batch correction is performed.n_hidden (
int
(default:None
)) – Number of nodes per hidden layer. If None, defaults to square root of number of regions.n_latent (
int
(default:None
)) – Dimensionality of the latent space. If None, defaults to square root of n_hidden.n_layers_encoder (
int
(default:2
)) – Number of hidden layers used for encoder NN.n_layers_decoder (
int
(default:2
)) – Number of hidden layers used for decoder NN.dropout_rate (
float
(default:0.1
)) – Dropout rate for neural networksmodel_depth (
bool
(default:True
)) – Model library size factors or not.region_factors (
bool
(default:True
)) – Include region-specific factors in the modeluse_batch_norm (
Literal
['encoder'
,'decoder'
,'none'
,'both'
] (default:'none'
)) –One of the following
'encoder'
- use batch normalization in the encoder only'decoder'
- use batch normalization in the decoder only'none'
- do not use batch normalization (default)'both'
- use batch normalization in both the encoder and decoder
use_layer_norm (
Literal
['encoder'
,'decoder'
,'none'
,'both'
] (default:'both'
)) –One of the following
'encoder'
- use layer normalization in the encoder only'decoder'
- use layer normalization in the decoder only'none'
- do not use layer normalization'both'
- use layer normalization in both the encoder and decoder (default)
latent_distribution (
Literal
['normal'
,'ln'
] (default:'normal'
)) –which latent distribution to use, options are
'normal'
- Normal distribution (default)'ln'
- Logistic normal distribution (Normal(0, I) transformed by softmax)
deeply_inject_covariates (
bool
(default:False
)) – Whether to deeply inject covariates into all layers of the decoder. If False (default), covairates will only be included in the input layer.encode_covariates (
bool
(default:False
)) – Whether to concatenate covariates to expression in encoder.extra_encoder_kwargs (
dict
|None
(default:None
)) – Extra keyword arguments passed intoscvi.nn.Encoder
.extra_decoder_kwargs (
dict
|None
(default:None
)) – Extra keyword arguments passed intoscvi.nn.Decoder
.
Attributes table#
Methods table#
|
Runs the generative model. |
|
Compute the reconstruction loss. |
|
Helper function used in forward pass. |
|
Compute the loss. |
Attributes#
- PEAKVAE.training: bool#
Methods#
- PEAKVAE.generative(z, qz_m, batch_index, cont_covs=None, cat_covs=None, use_z_mean=False)[source]#
Runs the generative model.